Discrete Topological Transformations for Image Processing

Topology-based image processing operators usually aim at transforming an image while preserving its topological characteristics. This chapter reviews some approaches which lead to efficient and exact algorithms for topological transformations in 2D, 3D and grayscale images. Some transformations that modify topology in a controlled manner are also described. Finally, based on the framework of critical kernels, we show how to design a topologically sound parallel thinning algorithm guided by a priority function.

[1]  A. Bourgougnon Comptes Rendus de l'Académie des Sciences. , 1879 .

[2]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[3]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[4]  T. Yung Kong,et al.  Topology-Preserving Deletion of 1's from 2-, 3- and 4-Dimensional Binary Images , 1997, DGCI.

[5]  M. Couprie,et al.  Topology preserving alternating sequential filter for smoothing 2D and 3D objects , 2004 .

[6]  Gilles Bertrand,et al.  Two-Dimensional Parallel Thinning Algorithms Based on Critical Kernels , 2008, Journal of Mathematical Imaging and Vision.

[7]  Azriel Rosenfeld,et al.  Some Parallel Thinning Algorithms for Digital Pictures , 1971, JACM.

[8]  T. Yung Kong,et al.  Problem of determining whether a parallel reduction operator for n-dimensional binary images always preserves topology , 1993, Other Conferences.

[9]  R. W. Hall Tests for connectivity preservation for parallel reduction operators , 1992 .

[10]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[11]  Gilles Bertrand,et al.  On P-simple points , 1995 .

[12]  Gilles Bertrand,et al.  A three-dimensional holes closing algorithm , 1996, Pattern Recognit. Lett..

[13]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[14]  Olivier Salvado,et al.  Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI , 2010, Journal of Neuroscience Methods.

[15]  Harry Blum,et al.  An Associative Machine for Dealing with the Visual Field and Some of Its Biological Implications , 1962 .

[16]  Gilles Bertrand,et al.  New 2D Parallel Thinning Algorithms Based on Critical Kernels , 2006, IWCIA.

[17]  Rémy Malgouyres,et al.  A concise characterization of 3D simple points , 2003, Discret. Appl. Math..

[18]  Hugues Talbot,et al.  Robust skeletonization using the discrete lambda-medial axis , 2010 .

[19]  Gilles Bertrand,et al.  Image segmentation through operators based on topology , 1997, J. Electronic Imaging.

[20]  Gilles Bertrand,et al.  New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Christian Ronse,et al.  Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images , 1988, Discret. Appl. Math..

[22]  Gilles Bertrand,et al.  Topological operators for grayscale image processing , 2001, J. Electronic Imaging.

[23]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[24]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[25]  Isabelle Bloch,et al.  opologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators , 2003, Pattern Recognit..

[26]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[27]  J. Chaussard Topological tools for discrete shape analysis , 2010 .

[28]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[29]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[30]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[31]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[32]  M. Couprie Note on fifteen 2 D parallel thinning algorithms , 2006 .

[33]  Cherng Min Ma,et al.  On topology preservation in 3D thinning , 1994 .

[34]  Luc Vincent,et al.  Euclidean skeletons and conditional bisectors , 1992, Other Conferences.

[35]  Gilles Bertrand,et al.  On Parallel Thinning Algorithms: Minimal Non-simple Sets, P-simple Points and Critical Kernels , 2009, Journal of Mathematical Imaging and Vision.

[36]  Gilles Bertrand,et al.  On critical kernels , 2007 .

[37]  T. Yung Kong,et al.  On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..

[38]  Jean-Daniel Boissonnat,et al.  Stability and Computation of Medial Axes - a State-of-the-Art Report , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[39]  Gilles Bertrand,et al.  A New 3D Parallel Thinning Scheme Based on Critical Kernels , 2006, DGCI.

[40]  Bernd Hamann,et al.  Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration , 2009, Mathematics and Visualization.

[41]  Robert A. Melter,et al.  Vision Geometry , 1992 .

[42]  Isabelle Bloch,et al.  Segmentation of 3D head MR images using morphological reconstruction under constraints and automatic selection of markers , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[43]  Luciano da Fontoura Costa,et al.  2D Euclidean distance transform algorithms: A comparative survey , 2008, CSUR.

[44]  F. Chazal,et al.  The λ-medial axis , 2005 .

[45]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 2005, International Journal of Computer Vision.

[46]  Hugues Talbot,et al.  Robust skeletonization using the discrete λ-medial axis , 2011, Pattern Recognit. Lett..

[47]  Gilles Bertrand,et al.  Topology preserving alternating sequential filter for smoothing two-dimensional and three-dimensional objects , 2004, J. Electronic Imaging.

[48]  Gilles Bertrand,et al.  A new characterization of three-dimensional simple points , 1994, Pattern Recognition Letters.