Finding Two Edge-Disjoint Paths with Length Constraints

We consider the problem of finding, for two pairs $(s_1,t_1)$ and $(s_2,t_2)$ of vertices in an undirected graphs, an $(s_1,t_1)$-path $P_1$ and an $(s_2,t_2)$-path $P_2$ such that $P_1$ and $P_2$ share no edges and the length of each $P_i$ satisfies $L_i$, where $L_i \in \{ \le k_i, \; = k_i, \; \ge k_i, \; \le \infty\}$. We regard $k_1$ and $k_2$ as parameters and investigate the parameterized complexity of the above problem when at least one of $P_1$ and $P_2$ has a length constraint (note that $L_i = "\le \infty"$ indicates that $P_i$ has no length constraint). For the nine different cases of $(L_1, L_2)$, we obtain FPT algorithms for seven of them. Our algorithms uses random partition backed by some structural results. On the other hand, we prove that the problem admits no polynomial kernel for all nine cases unless $NP \subseteq coNP/poly$.

[1]  Fedor V. Fomin,et al.  Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms , 2013, SODA.

[2]  Michal Pilipczuk,et al.  Parameterized Complexity of Eulerian Deletion Problems , 2012, Algorithmica.

[3]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[4]  Paul D. Seymour Disjoint paths in graphs , 2006, Discret. Math..

[5]  Aravind Srinivasan,et al.  Splitters and near-optimal derandomization , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[6]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[7]  Alon Itai,et al.  The complexity of finding maximum disjoint paths with length constraints , 1982, Networks.

[8]  Yossi Shiloach,et al.  A Polynomial Solution to the Undirected Two Paths Problem , 1980, JACM.

[9]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[10]  Spyros Tragoudas,et al.  Computing Disjoint Path with Lenght Constraints , 1996, WG.

[11]  Fahad Panolan,et al.  Representative Sets of Product Families , 2014, ESA.

[12]  Meirav Zehavi Mixing Color Coding-Related Techniques , 2015, ESA.

[13]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[14]  Hadas Shachnai,et al.  Representative families: A unified tradeoff-based approach , 2014, J. Comput. Syst. Sci..

[15]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[16]  Tatsuo Ohtsuki,et al.  The two disjoint path problem and wire routing design , 1980, Graph Theory and Algorithms.

[17]  B. Mohar,et al.  Graph Minors , 2009 .

[18]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[19]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[20]  Petr A. Golovach,et al.  Paths of bounded length and their cuts: Parameterized complexity and algorithms , 2009, Discret. Optim..

[21]  Harold N. Gabow,et al.  Finding Long Paths, Cycles and Circuits , 2008, ISAAC.

[22]  Tali Eilam-Tzoreff,et al.  The Disjoint Shortest Paths Problem , 1998, Discret. Appl. Math..

[23]  Leizhen Cai,et al.  Incompressibility of $$H$$H-Free Edge Modification Problems , 2014, Algorithmica.

[24]  Carsten Thomassen,et al.  2-Linked Graphs , 1980, Eur. J. Comb..

[25]  James B. Orlin,et al.  Max flows in O(nm) time, or better , 2013, STOC '13.