Computing and visualizing pose-interpolating 3D motions
暂无分享,去创建一个
[1] Ralph R. Martin,et al. Sweeping of three-dimensional objects , 1990, Comput. Aided Des..
[2] Ming C. Leu,et al. Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..
[3] Andrew P. Witkin,et al. Spacetime constraints , 1988, SIGGRAPH.
[4] Zeng-Jia Hu,et al. Swept volumes generated by the natural quadric surfaces , 1996, Comput. Graph..
[5] John F. Hughes,et al. Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.
[6] Ming-Chuan Leu,et al. Application of Flows and Envelopes to NC Machining , 1992 .
[7] J. D. Everett. A Treatise on the Theory of Screws , 1901, Nature.
[8] F. Litvin,et al. Swept Volume Determination and Interference Detection for Moving 3-D Solids , 1991 .
[10] Gershon Elber. Global error bounds and amelioration of sweep surfaces , 1997, Comput. Aided Des..
[11] A. Requicha,et al. CONSTANT-RADIUS BLENDING IN SOLID MODELLING , 1984 .
[12] Vijay Kumar,et al. Interpolation schemes for rigid body motions , 1998, Comput. Aided Des..
[13] William E. Lorensen,et al. Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.
[14] M. Leu,et al. Analysis of Swept Volume via Lie Groups and Differential Equations , 1992 .
[15] Soon-Bum Lim,et al. Approximate General Sweep Boundary of 2D Object , 1992 .
[16] Ming C. Leu,et al. Swept volume: a retrospective and prospective view , 1997, Neural Parallel Sci. Comput..
[17] Soon-Bum Lim,et al. Approximate General Sweep Boundary of a 2D Curved Object, , 1993, CVGIP Graph. Model. Image Process..
[18] A. T. Yang,et al. Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms , 1964 .
[19] E. Ramis,et al. Applications de l'analyse a la géométrie , 1981 .
[20] Karim Abdel-Malek,et al. Geometric representation of the swept volume using Jacobian rank-deficiency conditions , 1997, Comput. Aided Des..
[21] Bernard Roth,et al. An Extension of Screw Theory , 1981 .
[22] C. H. Suh,et al. Kinematics and mechanisms design , 1978 .
[23] Alan Watt,et al. Advanced animation and rendering techniques , 1992 .
[24] C. Barus. A treatise on the theory of screws , 1998 .
[25] André Crosnier,et al. Swept volumes generated from deformable objects application to NC verification , 1996, Proceedings of IEEE International Conference on Robotics and Automation.
[26] Otto Röschel,et al. Rational motion design - a survey , 1998, Comput. Aided Des..
[27] Mark A. Ganter,et al. On algebraic methods for implicit swept solids with finite extent , 1993 .
[28] Ken Shoemake,et al. Animating rotation with quaternion curves , 1985, SIGGRAPH.
[29] Mohamed A. Elbestawi,et al. Milling process simulation : A generic solid modeller based paradigm , 1998 .
[30] K. K. Wang,et al. Geometric Modeling for Swept Volume of Moving Solids , 1986, IEEE Computer Graphics and Applications.
[31] Gaspard Monge,et al. Application de l'analyse à la géométrie , 1850 .
[32] Lance Williams,et al. Motion signal processing , 1995, SIGGRAPH.
[33] Karim Abdel-Malek,et al. Swept volumes: void and boundary identification , 1998, Comput. Aided Des..
[34] Jarek Rossignac,et al. Matchmaker: manifold BReps for non-manifold r-sets , 1999, SMA '99.
[35] Ming C. Leu,et al. Trimming swept volumes , 1999, Comput. Aided Des..