Computing and visualizing pose-interpolating 3D motions

CAD and animation systems offer a variety of techniques for designing and animating arbitrary movements of rigid bodies. Such tools are essential for planning, analyzing, and demonstrating assembly and disassembly procedures of manufactured products. In this paper, we advocate the use of screw motions for such applications, because of their simplicity, flexibility, uniqueness, and computational advantages. Two arbitrary control-poses of an object are interpolated by a screw motion, which, in general, is unique and combines a minimum-angle rotation around an axis A with a translation by a vector parallel to A. We explain the advantages of screw motions for the intuitive design and local refinement of complex motions. We present a new, simple and efficient algorithm for computing the parameters of a screw motion that interpolates any two control-poses and explain how to use it to produce animations of the moving objects. Finally, we discuss a new and efficient variant of a known procedure for computing a set of faces which may be used to display the 3D region swept by a polyhedron that moves along a screw motion.

[1]  Ralph R. Martin,et al.  Sweeping of three-dimensional objects , 1990, Comput. Aided Des..

[2]  Ming C. Leu,et al.  Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..

[3]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[4]  Zeng-Jia Hu,et al.  Swept volumes generated by the natural quadric surfaces , 1996, Comput. Graph..

[5]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[6]  Ming-Chuan Leu,et al.  Application of Flows and Envelopes to NC Machining , 1992 .

[7]  J. D. Everett A Treatise on the Theory of Screws , 1901, Nature.

[8]  F. Litvin,et al.  Swept Volume Determination and Interference Detection for Moving 3-D Solids , 1991 .

[9]  张哉根,et al.  Leu-M , 1991 .

[10]  Gershon Elber Global error bounds and amelioration of sweep surfaces , 1997, Comput. Aided Des..

[11]  A. Requicha,et al.  CONSTANT-RADIUS BLENDING IN SOLID MODELLING , 1984 .

[12]  Vijay Kumar,et al.  Interpolation schemes for rigid body motions , 1998, Comput. Aided Des..

[13]  William E. Lorensen,et al.  Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.

[14]  M. Leu,et al.  Analysis of Swept Volume via Lie Groups and Differential Equations , 1992 .

[15]  Soon-Bum Lim,et al.  Approximate General Sweep Boundary of 2D Object , 1992 .

[16]  Ming C. Leu,et al.  Swept volume: a retrospective and prospective view , 1997, Neural Parallel Sci. Comput..

[17]  Soon-Bum Lim,et al.  Approximate General Sweep Boundary of a 2D Curved Object, , 1993, CVGIP Graph. Model. Image Process..

[18]  A. T. Yang,et al.  Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms , 1964 .

[19]  E. Ramis,et al.  Applications de l'analyse a la géométrie , 1981 .

[20]  Karim Abdel-Malek,et al.  Geometric representation of the swept volume using Jacobian rank-deficiency conditions , 1997, Comput. Aided Des..

[21]  Bernard Roth,et al.  An Extension of Screw Theory , 1981 .

[22]  C. H. Suh,et al.  Kinematics and mechanisms design , 1978 .

[23]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[24]  C. Barus A treatise on the theory of screws , 1998 .

[25]  André Crosnier,et al.  Swept volumes generated from deformable objects application to NC verification , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  Otto Röschel,et al.  Rational motion design - a survey , 1998, Comput. Aided Des..

[27]  Mark A. Ganter,et al.  On algebraic methods for implicit swept solids with finite extent , 1993 .

[28]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[29]  Mohamed A. Elbestawi,et al.  Milling process simulation : A generic solid modeller based paradigm , 1998 .

[30]  K. K. Wang,et al.  Geometric Modeling for Swept Volume of Moving Solids , 1986, IEEE Computer Graphics and Applications.

[31]  Gaspard Monge,et al.  Application de l'analyse à la géométrie , 1850 .

[32]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[33]  Karim Abdel-Malek,et al.  Swept volumes: void and boundary identification , 1998, Comput. Aided Des..

[34]  Jarek Rossignac,et al.  Matchmaker: manifold BReps for non-manifold r-sets , 1999, SMA '99.

[35]  Ming C. Leu,et al.  Trimming swept volumes , 1999, Comput. Aided Des..