A Robust Principal Component Analysis for Outlier Identification in Messy Microcalorimeter Data

A principal component analysis (PCA) of clean microcalorimeter pulse records can be a first step beyond statistically optimal linear filtering of pulses toward a fully nonlinear analysis. For PCA to be practical on spectrometers with hundreds of sensors, an automated identification of clean pulses is required. Robust forms of PCA are the subject of active research in machine learning. We examine a version known as coherence pursuit that is simple and fast and well matched to the automatic identification of outlier records, as needed for microcalorimeter pulse analysis.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  Diego Klabjan,et al.  Iteratively Reweighted Least Squares Algorithms for L1-Norm Principal Component Analysis , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[3]  B. Alpert,et al.  MICROCALORIMETER SPECTROSCOPY AT HIGH PULSE RATES: A MULTI-PULSE FITTING TECHNIQUE , 2015, 1503.05989.

[4]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[6]  Panos P. Markopoulos,et al.  Efficient L1-Norm Principal-Component Analysis via Bit Flipping , 2016, IEEE Transactions on Signal Processing.

[7]  Samuel Harvey Moseley,et al.  Signal processing for microcalorimeters , 1993 .

[8]  Samuel Harvey Moseley,et al.  Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry , 2014 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Feiping Nie,et al.  Non-Greedy L21-Norm Maximization for Principal Component Analysis , 2016, ArXiv.

[11]  George Atia,et al.  Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis , 2016, IEEE Transactions on Signal Processing.

[12]  W. Doriese,et al.  A Highly Linear Calibration Metric for TES X-ray Microcalorimeters , 2018, Journal of Low Temperature Physics.

[13]  B. Alpert,et al.  Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints. , 2013, The Review of scientific instruments.

[14]  R. Larsen Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .

[15]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[16]  Vishnu Menon,et al.  Structured and Unstructured Outlier Identification for Robust PCA: A Fast Parameter Free Algorithm , 2018, IEEE Transactions on Signal Processing.

[17]  S. Moseley,et al.  Thermal detectors as X-ray spectrometers , 1984 .

[18]  Chris Jacobsen,et al.  Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis , 2016 .

[19]  B. Alpert,et al.  When “Optimal Filtering” Isn’t , 2016, IEEE Transactions on Applied Superconductivity.

[20]  Simon R. Bandler,et al.  Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis , 2016 .

[21]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[22]  A. Tomada,et al.  Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation , 2014, 1406.7030.

[23]  G. C. Hilton,et al.  A reassessment of absolute energies of the x-ray L lines of lanthanide metals , 2017, 1702.00507.

[24]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[25]  Jianqing Fan,et al.  Distributions of angles in random packing on spheres , 2013, J. Mach. Learn. Res..

[26]  Namrata Vaswani,et al.  Static and Dynamic Robust PCA and Matrix Completion: A Review , 2018, Proceedings of the IEEE.

[27]  Simon R. Bandler,et al.  Non-linear effects in transition edge sensors for X-ray detection , 2006 .

[28]  Gilad Lerman,et al.  An Overview of Robust Subspace Recovery , 2018, Proceedings of the IEEE.

[29]  Philippe Peille,et al.  Performance assessment of different pulse reconstruction algorithms for the ATHENA X-ray Integral Field Unit , 2016, Astronomical Telescopes + Instrumentation.

[30]  C. Enss,et al.  Physics and Applications of Metallic Magnetic Calorimeters , 2018 .

[31]  W. B. Doriese,et al.  Approaches to the Optimal Nonlinear Analysis of Microcalorimeter Pulses , 2018 .