Multiple jamming cancellation using adaptive subarray DBF for monopulse angle estimation

An enhanced array processing architecture using adaptive digital beamforming at subarray level is proposed for monopulse angle estimation in presence of mainlobe and sidelobe jammings. First, in order to reduce the receiver count, fixed analog beamforming is performed at element level and sub-array outputs are converted to digital signals. Then, adaptive row and column digital beams are formed at subarray level to adaptively cancel multiple jammings. Finally, monopulse sum and delta beamformer follows using row and column beams in vertical and horizontal dimension respectively for elevation and azimuth angle estimation. Compared with the conventional processing with four beams, adaptive digital beamforming is performed with subarray beams prior to sum and delta beamforming, that is, more digital degrees of freedom are exploited. Thus the capability of cancelling multiple electronic jammings simultaneously is provided. Additionally, simulation results of angle estimation are shown. To sum up, this technique is developed to demonstrate the potential of digital beamforming at subarray level with low cost and more facility.