Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce

[1]  Son K. Pham,et al.  Improved genome assembly of American alligator genome reveals conserved architecture of estrogen signaling. , 2017, Genome research.

[2]  Kevin A. Burns,et al.  Genome evolution in the allotetraploid frog Xenopus laevis , 2016, Nature.

[3]  Songnian Hu,et al.  The rubber tree genome reveals new insights into rubber production and species adaptation , 2016, Nature Plants.

[4]  Walter Sanseverino,et al.  A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution , 2016, Nature Genetics.

[5]  L. Rieseberg,et al.  The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny , 2016, Scientific Reports.

[6]  Brendan L. O’Connell,et al.  Chromosome-scale shotgun assembly using an in vitro method for long-range linkage , 2015, Genome research.

[7]  R. Michelmore,et al.  Genome-Wide Architecture of Disease Resistance Genes in Lettuce , 2015, G3: Genes, Genomes, Genetics.

[8]  Romain Koszul,et al.  Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures , 2015, FEBS letters.

[9]  T. Michael,et al.  Progress, challenges and the future of crop genomes. , 2015, Current opinion in plant biology.

[10]  Robert D. Finn,et al.  Rfam 12.0: updates to the RNA families database , 2014, Nucleic Acids Res..

[11]  H. Nguyen,et al.  An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes[W] , 2014, Plant Cell.

[12]  Loren H. Rieseberg,et al.  De Novo Genome Assembly of the Economically Important Weed Horseweed Using Integrated Data from Multiple Sequencing Platforms1[C][W][OPEN] , 2014, Plant Physiology.

[13]  Blake C Meyers,et al.  sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software , 2014, Nucleic acids research.

[14]  Guy Baele,et al.  Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary , 2014, Genome research.

[15]  J. Zhai,et al.  Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing. , 2014, Methods.

[16]  A. Krogh,et al.  Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization , 2014, Proceedings of the National Academy of Sciences.

[17]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[18]  Sònia Garcia,et al.  Recent updates and developments to plant genome size databases , 2013, Nucleic Acids Res..

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  Wei Tang,et al.  Draft genome of the kiwifruit Actinidia chinensis , 2013, Nature Communications.

[21]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[22]  B. Meyers,et al.  Phased, Secondary, Small Interfering RNAs in Posttranscriptional Regulatory Networks[OPEN] , 2013, Plant Cell.

[23]  Sergio Alan Cervantes-Pérez,et al.  Architecture and evolution of a minute plant genome , 2013, Nature.

[24]  B. Meyers,et al.  MicroRNA Superfamilies Descended from miR390 and Their Roles in Secondary Small Interfering RNA Biogenesis in Eudicots[W] , 2013, Plant Cell.

[25]  H. V. van Leeuwen,et al.  An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce , 2013, G3: Genes, Genomes, Genetics.

[26]  R. Michelmore,et al.  Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride , 2013, PloS one.

[27]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[28]  R. Michelmore,et al.  Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.) , 2012, BMC Genomics.

[29]  Gary Stacey,et al.  MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. , 2011, Genes & development.

[30]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[31]  Xin Gao,et al.  Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. , 2011, Current protocols in bioinformatics.

[32]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[33]  M. C. Tellería,et al.  Eocene Patagonia Fossils of the Daisy Family , 2010, Science.

[34]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[35]  Steven Maere,et al.  Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event , 2009, Proceedings of the National Academy of Sciences.

[36]  M. Oh,et al.  Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. , 2009, Journal of plant physiology.

[37]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[38]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[39]  Marta Matvienko,et al.  Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. , 2008, Molecular biology and evolution.

[40]  Michael Freeling,et al.  The Value of Nonmodel Genomes and an Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids , 2008, Tropical Plant Biology.

[41]  C. Bailey,et al.  Plant Systematics: A Phylogenetic Approach , 2008 .

[42]  Stefano Lonardi,et al.  Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph , 2008, PLoS genetics.

[43]  J. Leebens-Mack,et al.  Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. , 2008, Molecular biology and evolution.

[44]  L. Rieseberg,et al.  Crop domestication in the Compositae: a family-wide trait assessment , 2008, Genetic Resources and Crop Evolution.

[45]  F. Seaman Sesquiterpene lactones as taxonomic characters in the asteraceae , 1982, The Botanical Review.

[46]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[47]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[48]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[49]  J. Vederas,et al.  Identification and comparison of natural rubber from two Lactuca species. , 2006, Phytochemistry.

[50]  C. Pieterse,et al.  Significance of inducible defense-related proteins in infected plants. , 2006, Annual review of phytopathology.

[51]  Steven Maere,et al.  The gain and loss of genes during 600 million years of vertebrate evolution , 2006, Genome Biology.

[52]  R. Jansen,et al.  Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). , 2005, Molecular biology and evolution.

[53]  P. Phillips,et al.  Duplication of floral regulatory genes in the Lamiales. , 2005, American journal of botany.

[54]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[55]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[56]  P. C. van Welzen,et al.  Plant Diversity and Complexity Patterns Local, Regional and Global Dimensions , 2005 .

[57]  John C. Walker Structure and function of the receptor-like protein kinases of higher plants , 1994, Plant Molecular Biology.

[58]  M. Källersjö,et al.  Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. , 2002, Molecular phylogenetics and evolution.

[59]  S. Shiu,et al.  Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling , 2001, Science's STKE.

[60]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[61]  H. Breiteneder,et al.  Isolation, Characterization, and Functional Analysis of a Novel cDNA Clone Encoding a Small Rubber Particle Protein from Hevea brasiliensis * , 1999, The Journal of Biological Chemistry.

[62]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[63]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[64]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[65]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[66]  R. Schilperoort,et al.  Plant Molecular Biology Manual , 1995, Springer Netherlands.

[67]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[68]  W. Koopman,et al.  A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subsect. Lactuca, Compositae) , 1996 .

[69]  A. Paterson,et al.  Genome mapping in plants , 1993 .

[70]  H. Price,et al.  COMPARISON OF PLANT DNA CONTENTS DETERMINED BY FEULGEN MICROSPECTROPHOTOMETRY AND LASER FLOW CYTOMETRY , 1991 .