Robust Estimators in Geodetic Networks Based on a New Metaheuristic: Independent Vortices Search

Geodetic networks provide accurate three-dimensional control points for mapping activities, geoinformation, and infrastructure works. Accurate computation and adjustment are necessary, as all data collection is vulnerable to outliers. Applying a Least Squares (LS) process can lead to inaccuracy over many points in such conditions. Robust Estimator (RE) methods are less sensitive to outliers and provide an alternative to conventional LS. To solve the RE functions, we propose a new metaheuristic (MH), based on the Vortex Search (IVS) algorithm, along with a novel search space definition scheme. Numerous scenarios for a Global Navigation Satellite Systems (GNSS)-based network are generated to compare and analyze the behavior of several known REs. A classic iterative RE and an LS process are also tested for comparison. We analyze the median and trim position of several estimators, in order to verify their impact on the estimates. The tests show that IVS performs better than the original algorithm; therefore, we adopted it in all subsequent RE computations. Regarding network adjustments, outcomes in the parameter estimation show that REs achieve better results in large-scale outliers’ scenarios. For detection, both LS and REs identify most outliers in schemes with large outliers.

[1]  Jinling Wang,et al.  A Comparison of Outlier Detection Procedures and Robust Estimation Methods in GPS Positioning , 2009, Journal of Navigation.

[2]  Ramon F. Hanssen,et al.  Geodetic Network Design for InSAR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Tamer Ölmez,et al.  A new metaheuristic for numerical function optimization: Vortex Search algorithm , 2015, Inf. Sci..

[4]  R. Lehmann On the formulation of the alternative hypothesis for geodetic outlier detection , 2013, Journal of Geodesy.

[5]  Xin-She Yang,et al.  Nature-Inspired Framework for Hyperspectral Band Selection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[6]  S. Imposa,et al.  The unstable eastern flank of Mt. Etna volcano (Italy): First results of a GNSS-based network at its southeastern edge , 2018 .

[7]  Peiliang Xu Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness , 2005 .

[8]  W. Baarda,et al.  A testing procedure for use in geodetic networks. , 1968 .

[9]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[10]  Maurício Roberto Veronez,et al.  Least trimmed squares estimator with redundancy constraint for outlier detection in GNSS networks , 2017, Expert Syst. Appl..

[11]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[12]  Peter Teunissen,et al.  Distributional theory for the DIA method , 2017, Journal of Geodesy.

[13]  W. Föstner Reliability analysis of parameter estimation in linear models with application to mensuration problems in computer vision , 1987 .

[14]  Mevlut Yetkin,et al.  Application of robust estimation in geodesy using the harmony search algorithm , 2018 .

[15]  David A. Landgrebe,et al.  Robust parameter estimation for mixture model , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Wolfgang Förstner Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision , 1987, Comput. Vis. Graph. Image Process..

[17]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[18]  Sergio Baselga,et al.  GNSS Differential Positioning by Robust Estimation , 2008 .

[19]  Z. Wan,et al.  A novel hybrid vortex search and artificial bee colony algorithm for numerical optimization problems , 2017, Wuhan University Journal of Natural Sciences.

[20]  Josiane Zerubia,et al.  Texture feature analysis using a gauss-Markov model in hyperspectral image classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Alfred Leick,et al.  GPS Satellite Surveying: Leick/GPS Satellite Surveying , 2015 .

[22]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[23]  Dervis Karaboga,et al.  On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation , 2015, Inf. Sci..

[24]  Sergio Baselga,et al.  Global Optimization Solution of Robust Estimation , 2007 .

[25]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[26]  The asymptotics of the least trimmed absolute deviations (LTAD) estimator , 1994 .

[27]  Mevlut Yetkin,et al.  Implementation of robust estimation in GPS networks using the Artificial Bee Colony algorithm , 2014, Earth Science Informatics.

[28]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[29]  Ivandro Klein,et al.  A new relationship between the quality criteria for geodetic networks , 2018, Journal of Geodesy.

[30]  Chen Chen,et al.  Multispectral Satellite Image Denoising via Adaptive Cuckoo Search-Based Wiener Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Berat Dougan,et al.  A Modified Vortex Search Algorithm for Numerical Function Optimization , 2016, 1606.02710.

[32]  C. Lee,et al.  Georegistration of airborne hyperspectral image data , 2001, IEEE Trans. Geosci. Remote. Sens..

[33]  Jikun Ou,et al.  Robust estimation for correlated observations: two local sensitivity-based downweighting strategies , 2010 .

[34]  Yuanyuan Wang,et al.  Robust Estimators for Multipass SAR Interferometry , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[35]  M. Veronez,et al.  On evaluation of different methods for quality control of correlated observations , 2015 .

[36]  D. U. Sanli,et al.  Detecting Configuration Weaknesses in Geodetic Networks , 2011 .

[37]  Sergio Baselga,et al.  Global robust estimation and its application to GPS positioning , 2008, Comput. Math. Appl..

[38]  Z. Wiśniewski Msplit(q) estimation: estimation of parameters in a multi split functional model of geodetic observations , 2010 .

[39]  Yi Lin,et al.  An Advanced Outlier Detected Total Least-Squares Algorithm for 3-D Point Clouds Registration , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[40]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[41]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[42]  Yuhui Shi,et al.  Metaheuristic research: a comprehensive survey , 2018, Artificial Intelligence Review.

[43]  Bernhard Hofmann-Wellenhof,et al.  GNSS - Global Navigation Satellite Systems , 2008 .

[44]  Ivandro Klein,et al.  A half-century of Baarda’s concept of reliability: a review, new perspectives, and applications , 2018, Survey Review.

[45]  Mevlut Yetkin,et al.  Application of the Sign-Constrained Robust Least-Squares Method to Surveying Networks , 2013 .

[46]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[47]  Ivandro Klein,et al.  DESIGN OF GEODETIC NETWORKS BASED ON OUTLIER IDENTIFICATIONCRITERIA: AN EXAMPLE APPLIED TO THE LEVELING NETWORK , 2018, Boletim de Ciências Geodésicas.

[48]  P. Teunissen Adjustment Theory: an introduction , 2000 .