Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders

The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto front and also did not distribute evenly over the Pareto front. Therefore, in this study, the concept of multiple nondominated leaders is incorporated to further improve the VEPSO algorithm. Hence, multiple nondominated solutions that are best at a respective objective function are used to guide particles in finding optimal solutions. The improved VEPSO is measured by the number of nondominated solutions found, generational distance, spread, and hypervolume. The results from the conducted experiments show that the proposed VEPSO significantly improved the existing VEPSO algorithms.

[1]  Kwang Y. Lee,et al.  Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems , 2009, Expert Syst. Appl..

[2]  Mohammad Ali Abido,et al.  Multiobjective particle swarm optimization with nondominated local and global sets , 2010, Natural Computing.

[3]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[4]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[5]  Enrique Alba,et al.  AbYSS: Adapting Scatter Search to Multiobjective Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[6]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[7]  Ender Özcan,et al.  Particle Swarms for Multimodal Optimization , 2007, ICANNGA.

[8]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[9]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Andries P. Engelbrecht,et al.  A Parallel Vector-Based Particle Swarm Optimizer , 2005 .

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  Y. Rahmat-Samii,et al.  Vector evaluated particle swarm optimization (VEPSO): optimization of a radiometer array antenna , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[13]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[14]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[15]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[16]  Kamarul Hawari Ghazali,et al.  Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions , 2013, TheScientificWorldJournal.

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Mohd Saberi Mohamad,et al.  DNA sequence design for DNA computation based on binary particle swarm optimization , 2012 .

[20]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[21]  Andries Petrus Engelbrecht,et al.  A DNA Sequence Design for DNA Computation Based on Binary Vector Evaluated Particle Swarm Optimization , 2012, Int. J. Unconv. Comput..

[22]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[23]  Carlos A. Coello Coello,et al.  Multi-Objective Particle Swarm Optimizers: An Experimental Comparison , 2009, EMO.

[24]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[25]  Gopalan Jagadeesh,et al.  Vector Evaluated Particle Swarm Optimization (VEPSO) of Supersonic Ejector for Hydrogen Fuel Cells , 2010 .

[26]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[27]  S. N. Omkar,et al.  Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures , 2008 .

[28]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[29]  Jacomine Grobler,et al.  Particle swarm optimization and differential evolution for multi-objective multiple machine scheduling , 2009 .