Ultracold Atoms Out of Equilibrium

The relaxation of isolated quantum many-body systems is a major unsolved problem connecting statistical and quantum physics. Studying such relaxation processes remains a challenge despite considerable efforts. Experimentally, it requires the creation and manipulation of well-controlled and truly isolated quantum systems. In this context, ultracold neutral atoms provide unique opportunities to understand nonequilibrium phenomena because of the large set of available methods to isolate, manipulate, and probe these systems. Here, we give an overview of the rapid experimental progress that has been made in the field over the past few years and highlight some of the questions that may be explored in the future.

[1]  E. Demler,et al.  Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. , 2008, Physical review letters.

[2]  J. Schmiedmayer,et al.  Chiral prethermalization in supersonically split condensates. , 2014, Physical review letters.

[3]  Subir Sachdev,et al.  Mott insulators in strong electric fields , 2002 .

[4]  I. McCulloch,et al.  Sudden expansion of Mott insulators in one dimension , 2013, 1305.5496.

[5]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[6]  I Bloch,et al.  Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. , 2001, Physical review letters.

[7]  A. Aspect,et al.  Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. , 2005, Physical review letters.

[8]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[9]  J. Schmiedmayer,et al.  Integrated Mach–Zehnder interferometer for Bose–Einstein condensates , 2013, Nature Communications.

[10]  J. Schmiedmayer,et al.  Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. , 2012, Physical review letters.

[11]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[13]  A. Sharma,et al.  Nonequilibrium quantum magnetism in a dipolar lattice gas. , 2013, Physical review letters.

[14]  L. Pollet,et al.  Relaxation and thermalization in the one-dimensional Bose-Hubbard model: A case study for the interaction quantum quench from the atomic limit , 2014, 1405.5404.

[15]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[16]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[17]  W. Ertmer,et al.  Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.

[18]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[19]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[20]  E. Demler,et al.  Universal rephasing dynamics after a quantum quench via sudden coupling of two initially independent condensates. , 2012, Physical review letters.

[21]  E. Altman,et al.  Many-body localization in one dimension as a dynamical renormalization group fixed point. , 2012, Physical review letters.

[22]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[23]  J. Danzl,et al.  Realization of an Excited, Strongly Correlated Quantum Gas Phase , 2009, Science.

[24]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[25]  R. Citro,et al.  One dimensional bosons: From condensed matter systems to ultracold gases , 2011, 1101.5337.

[26]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[27]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[28]  J. Schmiedmayer,et al.  Prethermalization in one-dimensional Bose gases: Description by a stochastic Ornstein-Uhlenbeck process , 2012, 1211.0016.

[29]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[30]  Wolfgang Ketterle,et al.  Bose–Einstein condensation of atomic gases , 2002, Nature.

[31]  E. Lieb,et al.  EXACT ANALYSIS OF AN INTERACTING BOSE GAS. I. THE GENERAL SOLUTION AND THE GROUND STATE , 1963 .

[32]  J. Schmiedmayer,et al.  Ramsey interference in one-dimensional systems: the full distribution function of fringe contrast as a probe of many-body dynamics. , 2009, Physical review letters.

[33]  L. Cheuk,et al.  Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas , 2011, Science.

[34]  Starobinsky,et al.  Reheating after inflation. , 1994, Physical review letters.

[35]  J. Schmiedmayer,et al.  Prethermalization revealed by the relaxation dynamics of full distribution functions , 2012, 1212.4645.

[36]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[37]  Marcos Rigol,et al.  Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. , 2007, Physical review letters.

[38]  Gary N. Felder,et al.  Equation of state and Beginning of Thermalization After Preheating , 2006 .

[39]  Troels Mørch,et al.  Non-destructive Faraday imaging of dynamically controlled ultracold atoms. , 2013, The Review of scientific instruments.

[40]  P. Reimann,et al.  Foundation of statistical mechanics under experimentally realistic conditions. , 2008, Physical review letters.

[41]  S. Jochim,et al.  Collective excitations of a degenerate gas at the BEC-BCS crossover. , 2004, Physical review letters.

[42]  F. Dalfovo,et al.  Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate , 2013, Nature Physics.

[43]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[44]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[45]  J. Schmiedmayer,et al.  The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise , 2011, 1104.5631.

[46]  F. A. Wolf,et al.  Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems , 2011, 1102.2117.

[47]  C. Chin,et al.  From Cosmology to Cold Atoms: Observation of Sakharov Oscillations in a Quenched Atomic Superfluid , 2012, Science.

[48]  P. Anderson Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems , 2007 .

[49]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[50]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[51]  C. Salomon,et al.  Exploring the thermodynamics of a universal Fermi gas , 2009, Nature.

[52]  Petrov,et al.  Regimes of quantum degeneracy in trapped 1D gases , 2000, Physical review letters.

[53]  Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals , 2005, cond-mat/0509083.

[54]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[55]  Martin Eckstein,et al.  Thermalization after an interaction quench in the Hubbard model. , 2009, Physical review letters.

[56]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[57]  T. Hänsch,et al.  Quantum degenerate two-species fermi-fermi mixture coexisting with a bose-einstein condensate. , 2007, Physical review letters.

[58]  M. Heyl,et al.  Dynamical quantum phase transitions in the transverse-field Ising model. , 2012, Physical review letters.

[59]  J. Schmiedmayer,et al.  Two-point phase correlations of a one-dimensional bosonic Josephson junction. , 2010, Physical review letters.

[60]  Marcos Rigol,et al.  Breakdown of thermalization in finite one-dimensional systems. , 2009, Physical review letters.

[61]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[62]  Cheng Chin,et al.  Feshbach resonances in ultracold gases , 2008, 0812.1496.

[63]  F. Marquardt,et al.  Quantum simulation of expanding space–time with tunnel-coupled condensates , 2012, 1208.2255.

[64]  S. Chu,et al.  Observation of Low-Field Feshbach Resonances in Collisions of Cesium Atoms , 1999 .

[65]  Mattias Gustavsson,et al.  Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons , 2010, Nature.

[66]  J. Schmiedmayer,et al.  Local emergence of thermal correlations in an isolated quantum many-body system , 2013, Nature Physics.

[67]  D. Weiss,et al.  A quantum Newton's cradle , 2006, Nature.

[68]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[69]  M. Cazalilla Effect of suddenly turning on interactions in the Luttinger model. , 2006, Physical review letters.

[70]  Toshiya Kinoshita,et al.  Observation of a One-Dimensional Tonks-Girardeau Gas , 2004, Science.

[71]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[72]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[73]  G Ferrari,et al.  Quasipure Bose-Einstein condensate immersed in a Fermi sea. , 2001, Physical review letters.

[74]  B. Schmidt,et al.  Fermionization dynamics of a strongly interacting one-dimensional Bose gas after an interaction quench , 2009, 0910.1749.

[75]  Alexander L. Gaunt,et al.  A superheated Bose-condensed gas , 2012, Nature Physics.

[76]  S. Jochim,et al.  Deterministic Preparation of a Tunable Few-Fermion System , 2011, Science.

[77]  M. Moeckel,et al.  Crossover from adiabatic to sudden interaction quenches in the Hubbard model: prethermalization and non-equilibrium dynamics , 2009, 0911.0875.

[78]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[79]  J. Smit,et al.  Equilibration in phi**4 theory in 3+1 dimensions , 2005, hep-ph/0503287.

[80]  N. Bar-Gill,et al.  Atomic homodyne detection of continuous-variable entangled twin-atom states , 2011, Nature.

[81]  S. Mandt,et al.  Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms , 2012, Nature Physics.

[82]  T. Jacqmin,et al.  Momentum distribution of 1D Bose gases at the quasi-condensation crossover: theoretical and experimental investigation , 2012, 1207.2855.

[83]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[84]  C. Wieman,et al.  Bose-Einstein Condensation in Atomic Gases , 1999 .

[85]  Ehud Altman,et al.  Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model. , 2007, Physical review letters.

[86]  P. Braun-Munzinger,et al.  Hadron production in Au - Au collisions at RHIC , 2001, hep-ph/0105229.

[87]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[88]  I. Bloch Ultracold quantum gases in optical lattices , 2005 .

[89]  Giant Spin Oscillations in an Ultracold Fermi Sea , 2013, Science.

[90]  A. Schirotzek,et al.  Feynman diagrams versus Fermi-gas Feynman emulator , 2011, Nature Physics.

[91]  C. Gerving,et al.  Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose–Einstein condensate , 2012, Nature Communications.

[92]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[93]  M. Oberthaler,et al.  Classical bifurcation at the transition from Rabi to Josephson dynamics. , 2010, Physical review letters.

[94]  A. Daley,et al.  Quantum quench in an atomic one-dimensional Ising chain. , 2013, Physical review letters.

[95]  Dexter Kozen,et al.  New , 2020, MFPS.

[96]  J. Rossnagel,et al.  Observation of the Kibble–Zurek scaling law for defect formation in ion crystals , 2013, Nature Communications.

[97]  P. Würtz,et al.  High-resolution scanning electron microscopy of an ultracold quantum gas , 2008 .

[98]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[99]  Immanuel Bloch,et al.  Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.

[100]  Ulrich Hohenester,et al.  Twin-atom beams , 2010, 1012.2348.

[101]  J Eisert,et al.  Exact relaxation in a class of nonequilibrium quantum lattice systems. , 2008, Physical review letters.

[102]  C. Yang,et al.  Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction , 1969 .

[103]  C. Regal,et al.  Resonant control of elastic collisions in an optically trapped fermi gas of atoms. , 2001, Physical review letters.

[104]  Alternatives to eigenstate thermalization. , 2011, Physical review letters.

[105]  K. Helmerson,et al.  Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. , 2010, Physical review letters.

[106]  Brian P. Anderson,et al.  Spontaneous vortices in the formation of Bose–Einstein condensates , 2008, Nature.

[107]  S. Jochim,et al.  Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. , 2012, Physical review letters.

[108]  Giovanni Gallavotti,et al.  Statistical Mechanics: A Short Treatise , 1999 .

[109]  A. Daley,et al.  Observation of many-body dynamics in long-range tunneling after a quantum quench , 2013, Science.

[110]  M. Schreiber,et al.  Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. , 2013, Physical review letters.

[111]  T. Esslinger,et al.  Exciting collective oscillations in a trapped 1D gas. , 2003, Physical review letters.

[112]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[113]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[114]  S. Will,et al.  Time-resolved observation of coherent multi-body interactions in quantum phase revivals , 2010, Nature.

[115]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[116]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[117]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[118]  T. Gasenzer,et al.  Tuning universality far from equilibrium , 2013, Scientific Reports.

[119]  Y. P. Chen,et al.  Photoassociation of a Bose-Einstein condensate near a Feshbach resonance. , 2008, Physical review letters.

[120]  Immanuel Bloch,et al.  Microscopic observation of magnon bound states and their dynamics , 2013, Nature.

[121]  T. Gasenzer,et al.  Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas , 2011, 1111.6127.

[122]  J. Schmiedmayer,et al.  Weakly interacting Bose gas in the one-dimensional limit. , 2010, Physical review letters.

[123]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[124]  N. J. van Druten,et al.  Yang-Yang thermodynamics on an atom chip. , 2007, Physical review letters.

[125]  R. Konik,et al.  Constructing the generalized Gibbs ensemble after a quantum quench. , 2012, Physical review letters.

[126]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[127]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[128]  H. Smith,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2001 .

[129]  P. Würtz,et al.  Experimental demonstration of single-site addressability in a two-dimensional optical lattice. , 2009, Physical review letters.

[130]  M. Vengalattore,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[131]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[132]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[133]  Immanuel Bloch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[134]  S. Chakram,et al.  Nondestructive imaging of an ultracold lattice gas , 2014, 1404.5583.

[135]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[136]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[137]  T. Gasenzer,et al.  Quantum versus classical statistical dynamics of an ultracold Bose gas , 2007, cond-mat/0703163.

[138]  Wolfgang Ketterle,et al.  Making, probing and understanding ultracold Fermi gases , 2008, 0801.2500.

[139]  J. Schmiedmayer,et al.  Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas , 2013, 1312.7568.

[140]  A. Polkovnikov,et al.  Prethermalization in quenched spinor condensates , 2010, 1009.1646.

[141]  M. Lukin,et al.  Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases. , 2007, Physical review letters.

[142]  A. Leggett Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems , 2006 .

[143]  J. Rottmann,et al.  Single-particle-sensitive imaging of freely propagating ultracold atoms , 2009, 0907.0674.