Fractional Combinatorial Optimization

An instance of a fractional combinatorial optimization problem F consists of a specification of a set \(\chi\subseteq{\left\{{0,1}\right\}^p}\), and two functions f : χ → R and g : χ → R. The task is to $$F:maximize\frac{{f(x)}}{{g(x)}},forx \in X$$

[1]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[2]  James B. Orlin,et al.  Finding minimum cost to time ratio cycles with small integral transit times , 1993, Networks.

[3]  Tomasz Radzik Newton's method for fractional combinatorial optimization , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[4]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[5]  Panos M. Pardalos,et al.  Global optimization of fractional programs , 1991, J. Glob. Optim..

[6]  Dan Gusfield,et al.  Parametric Combinatorial Computing and a Problem of Program Module Distribution , 1983, JACM.

[7]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[8]  Masao Fukushima,et al.  Approximation algorithms for combinatorial fractional programming problems , 1987, Math. Program..

[9]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[10]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[11]  Edith Cohen,et al.  Strongly polynomial-time and NC algorithms for detecting cycles in dynamic graphs , 1989, STOC '89.

[12]  Ramaswamy Chandrasekaran,et al.  Minimal ratio spanning trees , 1977, Networks.

[13]  Bennett Fox,et al.  FINDING MINIMAL COST-TIME RATIO CIRCUITS, , 1968 .

[14]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[15]  Sandy Irani,et al.  Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems , 1999, DAC '99.

[16]  Naoki Katoh A fully polynomial time approximation scheme for minimum cost-reliability ratio problems , 1992, Discret. Appl. Math..

[17]  O. Ore Theory of Graphs , 1962 .

[18]  Toshihide Ibaraki,et al.  Fractional knapsack problems , 1977, Math. Program..

[19]  Éva Tardos,et al.  Using separation algorithms in fixed dimension , 1990, SODA '90.

[20]  Ravindra K. Ahuja,et al.  Minimum cost-reliability ratio path problem , 1988, Comput. Oper. Res..

[21]  Wolfram Nicolai Optimization of STEOR networks via Markov renewal programming , 1982, Z. Oper. Research.

[22]  Leslie G. Valiant,et al.  Parallelism in Comparison Problems , 1975, SIAM J. Comput..

[23]  Sivan Toledo,et al.  Maximizing non-linear concave functions in fixed dimension , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[24]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[25]  P. Pardalos Complexity in numerical optimization , 1993 .

[26]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[27]  S. N. Kabadi,et al.  An efficient, strongly polynomial, e -approximation parametric optimization scheme , 1997 .

[28]  Daniel Mier Gusfield Sensitivity analysis for combinatorial optimization , 1980 .

[29]  Bennett Fox,et al.  Letter to the Editor - Finding Minimal Cost-Time Ratio Circuits , 1969, Oper. Res..

[30]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[31]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[32]  Patricia J. Carstensen The complexity of some problems in parametric linear and combinatorial programming , 1983 .

[33]  Uzi Vishkin,et al.  An O(n² log n) Parallel MAX-FLOW Algorithm , 1982, J. Algorithms.

[34]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[35]  Toshihide Ibaraki,et al.  Parametric approaches to fractional programs , 1983, Math. Program..

[36]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[37]  Robert E. Tarjan,et al.  A faster deterministic maximum flow algorithm , 1992, SODA '92.

[38]  Siegfried Schaible,et al.  Bibliography in fractional programming , 1982, Z. Oper. Research.

[39]  A. Goldberg,et al.  A new approach to the maximum-flow problem , 1988, JACM.

[40]  Andrew V. Goldberg,et al.  Tight bounds on the number of minimum-mean cycle cancellations and related results , 1991, SODA '91.

[41]  N. Megiddo,et al.  Maximizing Concave Functions in Fixed Dimension , 1993 .

[42]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[43]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[44]  VishkinUzi,et al.  An O(n2 log n) parallel max-flow algorithm , 1982 .

[45]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[46]  S. Thomas McCormick,et al.  Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow , 1993, Discret. Appl. Math..

[47]  Maiko Shigeno,et al.  An Algorithm for Fractional Assignment Problems , 1995, Discret. Appl. Math..

[48]  Tomasz Radzik,et al.  Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization , 1993 .

[49]  S. Schaible Fractional Programming. II, On Dinkelbach's Algorithm , 1976 .

[50]  G. Dantzig,et al.  FINDING A CYCLE IN A GRAPH WITH MINIMUM COST TO TIME RATIO WITH APPLICATION TO A SHIP ROUTING PROBLEM , 1966 .

[51]  Edith Cohen,et al.  Strongly polynomial-time and NC algorithms for detecting cycles in periodic graphs , 1993, JACM.

[52]  R. Chandrasekaran,et al.  Minimal Cost-Reliability Ratio Spanning Tree* , 1981 .

[53]  Rajesh K. Gupta,et al.  Faster maximum and minimum mean cycle algorithms for system-performance analysis , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..