The arithmetic and geometry of Salem numbers

A Salem number is a real algebraic integer, greater than 1, with the property that all of its conjugates lie on or within the unit circle, and at least one conjugate lies on the unit circle. In this paper we survey some of the recent appearances of Salem numbers in parts of geometry and arithmetic, and discuss the possible implications for the ‘minimization problem’. This is an old question in number theory which asks whether the set of Salem numbers is bounded away from 1.

[1]  David W. Boyd,et al.  Reciprocal polynomials having small measure. II , 1980 .

[2]  H. Seifert,et al.  Über das Geschlecht von Knoten , 1935 .

[3]  Kisao Takeuchi,et al.  Commensurability classes of arithmetic triangle groups : Dedicated to Professor Y. Kawada on his 60th birthday , 1977 .

[4]  Salem numbers and L-functions , 1984 .

[5]  E. Friedman,et al.  Ratios of regulators in totally real extensions of number fields , 1991 .

[6]  William J. Floyd,et al.  Symmetries of planar growth functions , 1988 .

[7]  Kenneth J. Giuliani,et al.  Small Salem Numbers , 1997 .

[8]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[9]  Victor Snaith,et al.  HEIGHTS OF POLYNOMIALS AND ENTROPY IN ALGEBRAIC DYNAMICS (Universitext) , 2000 .

[10]  David W. Boyd Small Salem numbers , 1977 .

[11]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[12]  F. Rodriguez Villegas,et al.  Modular Mahler Measures I , 1999 .

[13]  James W. Cannon,et al.  Growth functions of surface groups , 1992 .

[14]  Graham Everest,et al.  HEIGHTS OF POLYNOMIALS AND ENTROPY IN ALGEBRAIC DYNAMICS (Universitext) By G RAHAM E VEREST and T HOMAS W ARD : 212 pp., £35.00, ISBN 1 85233 125 9 (Springer, 1999). , 2000 .

[15]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[16]  R. Salem Algebraic numbers and Fourier analysis , 1963 .

[17]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[18]  George A. Elliott,et al.  K-theory , 1999 .

[19]  H. Stark L-functions at s = 1. II. Artin L-functions with rational characters , 1975 .

[20]  Edited Rob Kirby,et al.  Problems in Low-Dimensional Topology , 1995 .

[21]  Frank Quinn,et al.  Problems in low-dimensional topology , 1997 .

[22]  W. Parry Growth Series of Coxeter Groups and Salem Numbers , 1993 .

[23]  A. Bazylewicz,et al.  On the product of the conjugates outside the unit circle of an algebraic integer , 1976 .

[24]  Jean-Pierre Serre Cohomologie des groupes discrets , 1971 .

[25]  N. Skoruppa,et al.  Relative regulators of number fields , 1999 .

[26]  David W. Boyd,et al.  Mahler's Measure and Special Values of L-functions , 1998, Exp. Math..

[27]  David W. Boyd Pisot and Salem numbers in intervals of the real line , 1978 .

[28]  C. Smyth On measures of polynomials in several variables , 1981, Bulletin of the Australian Mathematical Society.

[29]  Edward Dobrowolski,et al.  On a question of Lehmer and the number of irreducible factors of a polynomial , 1979 .

[30]  D. Rolfsen Knots and Links , 2003 .

[31]  Christopher Deninger,et al.  Deligne periods of mixed motives, -theory and the entropy of certain ℤⁿ-actions , 1997 .

[32]  A. Fröhlich LES CONJECTURES DE STARK SUR LES FONCTIONS L d'ARTIN EN s = 0 (Progress in Mathematics, 47) , 1985 .

[33]  David W. Boyd,et al.  Speculations Concerning the Range of Mahler's Measure , 1980, Canadian Mathematical Bulletin.

[34]  Michael J. Mossinghoff Polynomials with small Mahler measure , 1998, Math. Comput..

[35]  Arithmetic groups and Salem numbers , 1992 .

[36]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[37]  On the arithmetic of two constructions of Salem numbers. , 1984 .

[38]  Nick Lord,et al.  Pisot and Salem Numbers , 1991 .

[39]  E. Hironaka The Lehmer Polynomial and Pretzel Knots , 1998 .

[40]  Klaus Schmidt Dynamical Systems of Algebraic Origin , 1995 .

[41]  Xiang-Sun Zhang,et al.  A note on the continuity of solutions of parametric linear programs , 1990, Math. Program..

[42]  D. H. Lehmer Factorization of Certain Cyclotomic Functions , 1933 .

[43]  G. Ray Relations Between Mahler's Measure and Values of L-Series , 1987, Canadian Journal of Mathematics.

[44]  Klaus Schmidt,et al.  Mahler measure and entropy for commuting automorphisms of compact groups , 1990 .

[45]  Walter D. Neumann,et al.  Arithmetic of Hyperbolic Manifolds , 1992 .

[46]  R. Steinberg FINITE REFLECTION GROUPS , 1959 .

[47]  Paul Voutier,et al.  An effective lower bound for the height of algebraic numbers , 2012, 1211.3110.