M-Adaptation in the mimetic finite difference method
暂无分享,去创建一个
Gianmarco Manzini | Daniil Svyatskiy | Konstantin Lipnikov | Vitaliy Gyrya | K. Lipnikov | G. Manzini | V. Gyrya | D. Svyatskiy
[1] Gianmarco Manzini,et al. Monotonicity Conditions in the Mimetic Finite Difference Method , 2011 .
[2] Gianmarco Manzini,et al. The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..
[3] M. Shashkov,et al. The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .
[4] C. Steefel,et al. Approaches to modeling of reactive transport in porous media , 1996 .
[5] J. David Moulton,et al. A multiscale multilevel mimetic (M3) method for well-driven flows in porous media , 2010, ICCS.
[6] Glaucio H. Paulino,et al. Honeycomb Wachspress finite elements for structural topology optimization , 2009 .
[7] M. Guddati,et al. Modified integration rules for reducing dispersion error in finite element methods , 2004 .
[8] I. Štekl,et al. Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .
[9] M. Shashkov,et al. A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .
[10] Eugene L. Wachspress,et al. Rational bases for convex polyhedra , 2010, Comput. Math. Appl..
[11] Victor G. Ganzha,et al. Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..
[12] Michael G. Edwards,et al. A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids , 2011, J. Comput. Phys..
[13] L. B. D. Veiga,et al. A Mimetic discretization method for linear elasticity , 2010 .
[14] Gianmarco Manzini,et al. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .
[15] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[16] Mikhail Shashkov,et al. The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods , 2001 .
[17] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[18] Konstantin Lipnikov,et al. High-order mimetic finite difference method for diffusion problems on polygonal meshes , 2008, J. Comput. Phys..
[19] J. Bramble,et al. New monotone type approximations for elliptic problems , 1964 .
[20] Daniil Svyatskiy,et al. Minimal stencil finite volume scheme with the discrete maximum principle , 2012 .
[21] Philippe G. Ciarlet,et al. Discrete maximum principle for finite-difference operators , 1970 .
[22] David Mora,et al. Numerical results for mimetic discretization of Reissner–Mindlin plate problems , 2012, 1207.2062.
[23] Ivar Aavatsmark,et al. Sufficient criteria are necessary for monotone control volume methods , 2009, Appl. Math. Lett..
[24] Jean E. Roberts,et al. Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..
[25] Daniil Svyatskiy,et al. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..
[26] Gianmarco Manzini,et al. Mimetic scalar products of discrete differential forms , 2014, J. Comput. Phys..
[27] James H. Bramble,et al. Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions , 1963 .
[28] Daniil Svyatskiy,et al. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..
[29] Gianmarco Manzini,et al. A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .
[30] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[31] Ivan Yotov,et al. Local flux mimetic finite difference methods , 2009, Numerische Mathematik.
[32] James M. Hyman,et al. The convergence of mimetic discretization for rough grids , 2004 .
[33] T. Belytschko,et al. THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .
[34] Eugene L. Wachspress,et al. Barycentric coordinates for polytopes , 2011, Comput. Math. Appl..
[35] M. Shashkov,et al. The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .
[36] Richard S. Varga,et al. On a Discrete Maximum Principle , 1966 .
[37] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[38] Lourenço Beirão da Veiga,et al. A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..
[39] M. Guddati,et al. Dispersion-reducing finite elements for transient acoustics , 2005 .
[40] M. Shashkov,et al. Compatible spatial discretizations , 2006 .
[41] Christophe Le Potier,et al. Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .
[42] J. Bramble,et al. On a Finite Difference Analogue of an Elliptic Boundary Problem which is Neither Diagonally Dominant Nor of Non‐negative Type , 1964 .
[43] Kai Hormann,et al. A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..
[44] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[45] Ivar Aavatsmark,et al. Monotonicity of control volume methods , 2007, Numerische Mathematik.
[46] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[47] M. Shashkov,et al. Support-operator finite-difference algorithms for general elliptic problems , 1995 .
[48] Konstantin Lipnikov,et al. M-Adaptation Method for Acoustic Wave Equation on Rectangular Meshes , 2013 .
[49] Michael G. Edwards,et al. Quasi M-Matrix Multifamily Continuous Darcy-Flux Approximations with Full Pressure Support on Structured and Unstructured Grids in Three Dimensions , 2011, SIAM J. Sci. Comput..
[50] Ivar Aavatsmark,et al. Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..
[51] Bradley T. Mallison,et al. A compact multipoint flux approximation method with improved robustness , 2008 .
[52] M. Shashkov,et al. The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .
[53] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[54] Albert J. Valocchi,et al. Non-negative mixed finite element formulations for a tensorial diffusion equation , 2008, J. Comput. Phys..
[55] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[56] Glaucio H. Paulino,et al. Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .
[57] P. G. Ciarlet,et al. Some results in the theory of nonnegative matrices , 1968 .
[58] D. Arnold,et al. Defferential Complexes and Stability of Finite Element Methods II: The Elasticity Complex , 2006 .
[59] Jing Wan,et al. Enriched multi-point flux approximation for general grids , 2008, J. Comput. Phys..
[60] Zhiqiang Sheng,et al. Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..
[61] Enrico Bertolazzi. DISCRETE CONSERVATION AND DISCRETE MAXIMUM PRINCIPLE FOR ELLIPTIC PDEs , 1998 .
[62] Ivan Yotov,et al. Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.
[63] Maryem A.T. Elshebli. Discrete maximum principle for the finite element solution of linear non-stationary diffusion-reaction problems , 2008 .
[64] Gianmarco Manzini,et al. A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..
[65] Gianmarco Manzini,et al. Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .
[66] Lourenço Beirão da Veiga,et al. A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.
[67] Mikhail Shashkov,et al. Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .
[68] Daniil Svyatskiy,et al. A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..
[69] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[70] V. E. Henson,et al. BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .
[71] Martin Vohralík,et al. From face to element unknowns by local static condensation with application to nonconforming finite elements , 2013 .
[72] J. M. Hyman,et al. Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .
[73] Gianmarco Manzini,et al. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..
[74] Enrico Bertolazzi,et al. A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..
[75] Sergey Korotov,et al. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..
[76] E. Hope,et al. Elementare Bemerkungen über die Lösungen partieller differentialgleichungen zweiter Ordnung vom elliptischen Typus , 1927 .
[77] E. Bertolazzi,et al. A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .
[78] Patrizia Pucci,et al. The strong maximum principle revisited , 2004 .
[79] Alexandre Ern,et al. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .
[80] Lourenço Beirão da Veiga,et al. A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.
[81] N. Sukumar,et al. Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .
[82] Konstantin Lipnikov,et al. Mimetic discretization of two-dimensional magnetic diffusion equations , 2013, J. Comput. Phys..
[83] Christophe Le Potier,et al. Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .
[84] Konstantin Lipnikov,et al. M-ADAPTATION METHOD FOR ACOUSTIC WAVE EQUATION ON SQUARE MESHES , 2012 .
[85] D. Kershaw. Differencing of the diffusion equation in Lagrangian hydrodynamic codes , 1981 .
[86] K. Stüben. A review of algebraic multigrid , 2001 .
[87] Antti Hannukainen,et al. Discrete maximum principle for parabolic problems solved by prismatic finite elements , 2010, Math. Comput. Simul..
[88] M. Shashkov,et al. The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .
[89] Tomáš Vejchodský,et al. A weak discrete maximum principle for hp-FEM , 2007 .
[90] Kathryn A. Trapp,et al. INNER PRODUCTS IN COVOLUME AND MIMETIC METHODS , 2008 .
[91] Mikhail Shashkov,et al. Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .
[92] Magne S. Espedal,et al. Symmetry and M-Matrix Issues for the O-Method on an Unstructured Grid , 2002 .
[93] Ivar Aavatsmark,et al. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..
[94] Lourenço Beirão da Veiga. Finite Element Methods for a Modified Reissner-Mindlin Free Plate Model , 2004, SIAM J. Numer. Anal..
[95] Stefan Finsterle,et al. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT (ASCEM): AN OVERVIEW OF INITIAL RESULTS , 2011 .
[96] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[97] Lourenço Beirão da Veiga,et al. Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..
[98] Gianmarco Manzini,et al. Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..
[99] Sergey Korotov,et al. The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .
[100] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[101] Enrico Bertolazzi,et al. ON VERTEX RECONSTRUCTIONS FOR CELL-CENTERED FINITE VOLUME APPROXIMATIONS OF 2D ANISOTROPIC DIFFUSION PROBLEMS , 2007 .
[102] Gianmarco Manzini,et al. A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .
[103] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[104] E. Wachspress,et al. A Rational Finite Element Basis , 1975 .
[105] Sergey Korotov,et al. On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..
[106] Jérôme Droniou,et al. Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..
[107] R. A. Nicolaides,et al. Covolume Discretization of Differential Forms , 2006 .
[108] Stéphane Cordier,et al. On the non existence of monotone linear schema for some linear parabolic equations , 2005 .
[109] M. Shashkov,et al. A discrete operator calculus for finite difference approximations , 2000 .
[110] Konstantin Lipnikov,et al. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..
[111] Michael G. Edwards,et al. Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .
[112] Gianmarco Manzini,et al. Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.
[113] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[114] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[115] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[116] B. Wohlmuth,et al. MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS , 2013 .
[117] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[118] Zhiqiang Sheng,et al. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..
[119] R. Eymard,et al. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.
[120] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[121] Robert Eymard,et al. A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.
[122] Glaucio H. Paulino,et al. PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .
[123] P. G. Ciarlet,et al. Maximum principle and uniform convergence for the finite element method , 1973 .