M-Adaptation in the mimetic finite difference method

The mimetic finite difference method produces a family of schemes with equivalent properties such as the stencil size, stability region, and convergence order. Each member of this family is defined by a set of parameters which can be chosen locally for every mesh element. The number of parameters depends on the geometry of a particular mesh element. M-Adaptation is a new adaptation methodology that identifies a member of this family with additional (superior) properties compared to the other schemes in the family. We analyze the enforcement of the discrete maximum principles for the diffusion equation in the primal and dual forms, the reduction of numerical dispersion and anisotropy for the acoustic wave equation, and the optimization of the performance of multi-grid solvers.

[1]  Gianmarco Manzini,et al.  Monotonicity Conditions in the Mimetic Finite Difference Method , 2011 .

[2]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[3]  M. Shashkov,et al.  The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .

[4]  C. Steefel,et al.  Approaches to modeling of reactive transport in porous media , 1996 .

[5]  J. David Moulton,et al.  A multiscale multilevel mimetic (M3) method for well-driven flows in porous media , 2010, ICCS.

[6]  Glaucio H. Paulino,et al.  Honeycomb Wachspress finite elements for structural topology optimization , 2009 .

[7]  M. Guddati,et al.  Modified integration rules for reducing dispersion error in finite element methods , 2004 .

[8]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[9]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[10]  Eugene L. Wachspress,et al.  Rational bases for convex polyhedra , 2010, Comput. Math. Appl..

[11]  Victor G. Ganzha,et al.  Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..

[12]  Michael G. Edwards,et al.  A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids , 2011, J. Comput. Phys..

[13]  L. B. D. Veiga,et al.  A Mimetic discretization method for linear elasticity , 2010 .

[14]  Gianmarco Manzini,et al.  Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .

[15]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[16]  Mikhail Shashkov,et al.  The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods , 2001 .

[17]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[18]  Konstantin Lipnikov,et al.  High-order mimetic finite difference method for diffusion problems on polygonal meshes , 2008, J. Comput. Phys..

[19]  J. Bramble,et al.  New monotone type approximations for elliptic problems , 1964 .

[20]  Daniil Svyatskiy,et al.  Minimal stencil finite volume scheme with the discrete maximum principle , 2012 .

[21]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[22]  David Mora,et al.  Numerical results for mimetic discretization of Reissner–Mindlin plate problems , 2012, 1207.2062.

[23]  Ivar Aavatsmark,et al.  Sufficient criteria are necessary for monotone control volume methods , 2009, Appl. Math. Lett..

[24]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[25]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[26]  Gianmarco Manzini,et al.  Mimetic scalar products of discrete differential forms , 2014, J. Comput. Phys..

[27]  James H. Bramble,et al.  Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions , 1963 .

[28]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[29]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[30]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[31]  Ivan Yotov,et al.  Local flux mimetic finite difference methods , 2009, Numerische Mathematik.

[32]  James M. Hyman,et al.  The convergence of mimetic discretization for rough grids , 2004 .

[33]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[34]  Eugene L. Wachspress,et al.  Barycentric coordinates for polytopes , 2011, Comput. Math. Appl..

[35]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[36]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[37]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[38]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..

[39]  M. Guddati,et al.  Dispersion-reducing finite elements for transient acoustics , 2005 .

[40]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[41]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[42]  J. Bramble,et al.  On a Finite Difference Analogue of an Elliptic Boundary Problem which is Neither Diagonally Dominant Nor of Non‐negative Type , 1964 .

[43]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[44]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[45]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[46]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[47]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[48]  Konstantin Lipnikov,et al.  M-Adaptation Method for Acoustic Wave Equation on Rectangular Meshes , 2013 .

[49]  Michael G. Edwards,et al.  Quasi M-Matrix Multifamily Continuous Darcy-Flux Approximations with Full Pressure Support on Structured and Unstructured Grids in Three Dimensions , 2011, SIAM J. Sci. Comput..

[50]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[51]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .

[52]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[53]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[54]  Albert J. Valocchi,et al.  Non-negative mixed finite element formulations for a tensorial diffusion equation , 2008, J. Comput. Phys..

[55]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[56]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[57]  P. G. Ciarlet,et al.  Some results in the theory of nonnegative matrices , 1968 .

[58]  D. Arnold,et al.  Defferential Complexes and Stability of Finite Element Methods II: The Elasticity Complex , 2006 .

[59]  Jing Wan,et al.  Enriched multi-point flux approximation for general grids , 2008, J. Comput. Phys..

[60]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[61]  Enrico Bertolazzi DISCRETE CONSERVATION AND DISCRETE MAXIMUM PRINCIPLE FOR ELLIPTIC PDEs , 1998 .

[62]  Ivan Yotov,et al.  Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.

[63]  Maryem A.T. Elshebli Discrete maximum principle for the finite element solution of linear non-stationary diffusion-reaction problems , 2008 .

[64]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[65]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[66]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[67]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .

[68]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[69]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[70]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[71]  Martin Vohralík,et al.  From face to element unknowns by local static condensation with application to nonconforming finite elements , 2013 .

[72]  J. M. Hyman,et al.  Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .

[73]  Gianmarco Manzini,et al.  Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..

[74]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[75]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[76]  E. Hope,et al.  Elementare Bemerkungen über die Lösungen partieller differentialgleichungen zweiter Ordnung vom elliptischen Typus , 1927 .

[77]  E. Bertolazzi,et al.  A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .

[78]  Patrizia Pucci,et al.  The strong maximum principle revisited , 2004 .

[79]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[80]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.

[81]  N. Sukumar,et al.  Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons , 2011 .

[82]  Konstantin Lipnikov,et al.  Mimetic discretization of two-dimensional magnetic diffusion equations , 2013, J. Comput. Phys..

[83]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[84]  Konstantin Lipnikov,et al.  M-ADAPTATION METHOD FOR ACOUSTIC WAVE EQUATION ON SQUARE MESHES , 2012 .

[85]  D. Kershaw Differencing of the diffusion equation in Lagrangian hydrodynamic codes , 1981 .

[86]  K. Stüben A review of algebraic multigrid , 2001 .

[87]  Antti Hannukainen,et al.  Discrete maximum principle for parabolic problems solved by prismatic finite elements , 2010, Math. Comput. Simul..

[88]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[89]  Tomáš Vejchodský,et al.  A weak discrete maximum principle for hp-FEM , 2007 .

[90]  Kathryn A. Trapp,et al.  INNER PRODUCTS IN COVOLUME AND MIMETIC METHODS , 2008 .

[91]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[92]  Magne S. Espedal,et al.  Symmetry and M-Matrix Issues for the O-Method on an Unstructured Grid , 2002 .

[93]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[94]  Lourenço Beirão da Veiga Finite Element Methods for a Modified Reissner-Mindlin Free Plate Model , 2004, SIAM J. Numer. Anal..

[95]  Stefan Finsterle,et al.  ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT (ASCEM): AN OVERVIEW OF INITIAL RESULTS , 2011 .

[96]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[97]  Lourenço Beirão da Veiga,et al.  Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[98]  Gianmarco Manzini,et al.  Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..

[99]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[100]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[101]  Enrico Bertolazzi,et al.  ON VERTEX RECONSTRUCTIONS FOR CELL-CENTERED FINITE VOLUME APPROXIMATIONS OF 2D ANISOTROPIC DIFFUSION PROBLEMS , 2007 .

[102]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[103]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[104]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[105]  Sergey Korotov,et al.  On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..

[106]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[107]  R. A. Nicolaides,et al.  Covolume Discretization of Differential Forms , 2006 .

[108]  Stéphane Cordier,et al.  On the non existence of monotone linear schema for some linear parabolic equations , 2005 .

[109]  M. Shashkov,et al.  A discrete operator calculus for finite difference approximations , 2000 .

[110]  Konstantin Lipnikov,et al.  A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..

[111]  Michael G. Edwards,et al.  Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .

[112]  Gianmarco Manzini,et al.  Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.

[113]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[114]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[115]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[116]  B. Wohlmuth,et al.  MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS , 2013 .

[117]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[118]  Zhiqiang Sheng,et al.  The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..

[119]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[120]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[121]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[122]  Glaucio H. Paulino,et al.  PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .

[123]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .