Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model

Abstract Under investigation in this paper is a generalized mixed nonlinear Schrodinger equation (GMNLSE) which arises in several physical areas including the quantum field theory, weakly nonlinear dispersive water waves, and nonlinear optics. The linear stability analysis is performed and the instability zones as well as the modulational instability gain are obtained and discussed. Higher–order rogue waves (RWs) in terms of the determinants for the GMNLSE model are constructed by the N -fold Darboux transformation. Several patterns of the RWs are illustrated, such as the fundamental pattern, triangular pattern, circular pattern, pentagon pattern, circular–triangular pattern, and circular-fundamental pattern. Effects of the nonlinear parameters on the RWs are discussed. It is found that the nonlinear terms affect the widths and velocities of the RWs, although the amplitudes of these waves remain unchanged. The semirational RW solution, which is a combination of rational and exponential functions, is derived to describe the interaction between the RW and multi-breather.

[1]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[2]  A. Kundu Exact solutions to higher-order nonlinear equations through gauge transformation , 1987 .

[3]  Li-Chen Zhao,et al.  Dynamics and trajectory of nonautonomous rogue wave in a graded-index planar waveguide with oscillating refractive index , 2014 .

[4]  Lijuan Guo,et al.  Theoretical and experimental evidence of non-symmetric doubly localized rogue waves , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Xianguo Geng,et al.  Darboux Transformation and Soliton Solutions for Generalized Nonlinear Schrödinger Equations , 1999 .

[6]  Zhenyun Qin,et al.  Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation , 2014 .

[7]  Xing Lü,et al.  Soliton behavior for a generalized mixed nonlinear Schrödinger model with N-fold Darboux transformation. , 2013, Chaos.

[8]  Fajun Yu,et al.  Multi-rogue waves for a higher-order nonlinear Schrödinger equation in optical fibers , 2013, Appl. Math. Comput..

[9]  Gui Mu,et al.  Dynamics of Rogue Waves on a Multisoliton Background in a Vector Nonlinear Schrödinger Equation , 2014, SIAM J. Appl. Math..

[10]  Kwok Wing Chow,et al.  Rogue wave modes for a derivative nonlinear Schrödinger model. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Chao-Qing Dai,et al.  The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrödinger equation , 2012 .

[12]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[13]  P. Clarkson Dimensional reductions and exact solutions of a generalized nonlinear Schrodinger equation , 1992 .

[14]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[15]  Lei Wang,et al.  Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. , 2015, Chaos.

[16]  Fa-Jun Yu,et al.  Nonautonomous rogue waves and 'catch' dynamics for the combined Hirota-LPD equation with variable coefficients , 2016, Commun. Nonlinear Sci. Numer. Simul..

[17]  Yi Zhang,et al.  Rational solutions to a KdV-like equation , 2015, Appl. Math. Comput..

[18]  D. Luc,et al.  A saddlepoint theorem for set - valued maps , 1989 .

[19]  David J. Kaup,et al.  An exact solution for a derivative nonlinear Schrödinger equation , 1978 .

[20]  A. Fokas,et al.  Generating mechanism for higher-order rogue waves. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Anjan Kundu,et al.  Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations , 1984 .

[22]  Yasuhiro Ohta,et al.  General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Yu Zhang,et al.  Rogue waves in a resonant erbium-doped fiber system with higher-order effects , 2015, Appl. Math. Comput..

[24]  G. P. Veldes,et al.  Electromagnetic rogue waves in beam–plasma interactions , 2013 .

[25]  Yasuhiro Ohta,et al.  Rogue waves in the Davey-Stewartson I equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[27]  Vladimir V. Konotop,et al.  Vector rogue waves in binary mixtures of Bose-Einstein condensates , 2010 .

[28]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[29]  Zhenyun Qin,et al.  Matter rogue waves in an F=1 spinor Bose-Einstein condensate. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  W. Moslem,et al.  Langmuir rogue waves in electron-positron plasmas , 2011 .

[31]  Geng Xian-Guo,et al.  A hierarchy of non-linear evolution equations its Hamiltonian structure and classical integrable system , 1992 .

[32]  W. M. Liu,et al.  Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction , 2011, 1108.2328.

[33]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[34]  Zhaqilao On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation , 2013 .

[35]  Jingsong He,et al.  The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation , 2013, Commun. Nonlinear Sci. Numer. Simul..

[36]  Zhenya Yan,et al.  New rogue waves and dark-bright soliton solutions for a coupled nonlinear Schrödinger equation with variable coefficients , 2014, Appl. Math. Comput..

[37]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[38]  Chao-Qing Dai,et al.  Controllable optical rogue waves in the femtosecond regime. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  A. Mussot,et al.  Third-order dispersion for generating optical rogue solitons , 2010 .

[40]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[41]  Adrian Ankiewicz,et al.  Rogue waves and rational solutions of the Hirota equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[43]  Min Chen,et al.  Direct search for exact solutions to the nonlinear Schrödinger equation , 2009, Appl. Math. Comput..

[44]  D. Solli,et al.  Recent progress in investigating optical rogue waves , 2013 .

[45]  Xing Lü,et al.  Madelung fluid description on a generalized mixed nonlinear Schrödinger equation , 2015 .

[46]  Zhenya Yan,et al.  Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients , 2013, 1310.3544.

[47]  Jingsong He,et al.  N-order bright and dark rogue waves in a resonant erbium-doped fiber system , 2012 .

[48]  V. Konotop,et al.  Matter rogue waves , 2009 .

[49]  Jingsong He,et al.  Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Fabio Baronio,et al.  Rogue waves emerging from the resonant interaction of three waves. , 2013, Physical review letters.

[51]  Cristina Masoller,et al.  Rogue waves in optically injected lasers: Origin, predictability, and suppression , 2013 .

[52]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[53]  L. Stenflo,et al.  Rogue waves in the atmosphere , 2009, Journal of Plasma Physics.

[54]  Adrian Ankiewicz,et al.  Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift , 2013 .

[55]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[56]  Engui Fan,et al.  Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation , 2000 .

[57]  Liming Ling,et al.  Simple determinant representation for rogue waves of the nonlinear Schrödinger equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Bao-Zhu Zhao,et al.  Exact rational solutions to a Boussinesq-like equation in (1+1)-dimensions , 2015, Appl. Math. Lett..

[59]  Bao-Feng Feng,et al.  Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems , 2015 .

[60]  Uwe Bandelow,et al.  Persistence of rogue waves in extended nonlinear Schrödinger equations: Integrable Sasa-Satsuma case , 2012 .

[61]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[62]  Jingsong He,et al.  The rogue wave and breather solution of the Gerdjikov-Ivanov equation , 2011, 1109.3283.

[63]  K. W. Chow,et al.  A system of coupled partial differential equations exhibiting both elevation and depression rogue wave modes , 2015, Appl. Math. Lett..

[64]  Jingsong He,et al.  Determinant representation of Darboux transformation for the AKNS system , 2006 .

[65]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[66]  Zhenya Yan Financial Rogue Waves , 2009, 0911.4259.

[67]  Dengyuan Chen,et al.  Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations , 2005 .

[68]  Chen Yong,et al.  Higher-Order Localized Waves in Coupled Nonlinear Schrödinger Equations , 2014 .

[69]  Junkichi Satsuma,et al.  Bilinearization of a Generalized Derivative Nonlinear Schrödinger Equation , 1995 .

[70]  Li-Chen Zhao,et al.  Dynamics of nonautonomous rogue waves in Bose-Einstein condensate , 2013 .

[71]  Shally Loomba,et al.  Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Adrian Ankiewicz,et al.  Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Yasuhiro Ohta,et al.  General rogue waves in the focusing and defocusing Ablowitz–Ladik equations , 2014 .

[74]  Jingsong He,et al.  The n‐order rogue waves of Fokas–Lenells equation , 2012, 1211.5924.

[75]  E. Fan,et al.  A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations , 2001 .

[76]  M. Wadati,et al.  A Generalization of Inverse Scattering Method , 1979 .

[77]  Annalisa Calini,et al.  Homoclinic chaos increases the likelihood of rogue wave formation , 2002 .

[78]  Kin Seng Chiang,et al.  Breathers and 'black' rogue waves of coupled nonlinear Schrödinger equations with dispersion and nonlinearity of opposite signs , 2015, Commun. Nonlinear Sci. Numer. Simul..

[79]  Jingsong He,et al.  Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  J. Wyller,et al.  Classification of Kink Type Solutions to the Extended Derivative Nonlinear Schrödinger Equation , 1998 .

[81]  Sergei K. Turitsyn,et al.  Optical rogue waves in telecommunication data streams , 2011 .

[82]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .

[83]  M Senthilvelan,et al.  Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Engui Fan,et al.  Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation , 2000 .

[85]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[86]  Wenxiu Ma Darboux Transformations for a Lax Integrable System in 2n Dimensions , 1996, solv-int/9605002.

[87]  Jingsong He,et al.  The higher order rogue wave solutions of the Gerdjikov–Ivanov equation , 2013, 1304.2583.

[88]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[89]  P. Clarkson,et al.  Painleve analysis of the non-linear Schrodinger family of equations , 1987 .

[90]  Jingsong He,et al.  The Darboux transformation of the Kundu–Eckhaus equation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.