An Efficient Approach For Optimal Prefetching To Reduce Web Access Latency.

The exponential growth and popularity of WWW increases the amount of traffic which results in major congestion problems over the available bandwidth for the retrieval of data. This results in the increase of user perceived latency. Prefetching of web pages is a potential area that can significantly reduce the web access latency. It refers to the mechanism of deducing the forthcoming page accesses of a client. Prefetching reduces the user"s perceived latency but on the contrary it increases the traffic that may result in further congestion,. So the major concern of the prefetching is to device an algorithm that could efficiently and optimally prefetch the pages so that the traffic load is minimized. In this dissertation an optimal prefetching algorithm is proposed which gives the optimal number of web documents to be prefetched to reduce latency. The algorithm is based on the current content of the web documents so there is no requirement of maintaining past history of the users and is also beneficial for first retrieval of access of web resources.

[1]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[2]  Ellen Spertus,et al.  ParaSite: Mining Structural Information on the Web , 1997, Comput. Networks.

[3]  Virgílio A. F. Almeida,et al.  Characterizing reference locality in the WWW , 1996, Fourth International Conference on Parallel and Distributed Information Systems.

[4]  Oren Etzioni,et al.  Adaptive Web sites , 2000, CACM.

[5]  Ramli Azizul Azhar Web Usage Mining for UUM Learning Care Using Association Rules , 2004 .

[6]  Wei Lin,et al.  Web prefetching between low-bandwidth clients and proxies: potential and performance , 1999, SIGMETRICS '99.

[7]  M. H. Margahny,et al.  FAST ALGORITHM FOR MINING ASSOCIATION RULES , 2014 .

[8]  Sule Gündüz,et al.  Recommendation models for web users: User interest model and click-stream tree (Web kullanıcıları için öneri modelleri: Kullanıcı ilgisi modeli ve tıklama izi ağacı) , 2003 .

[9]  Evangelos P. Markatos,et al.  Main Memory Caching of Web Documents , 1996, Comput. Networks.

[10]  Evangelos P. Markatos,et al.  A top- 10 approach to prefetching on the web , 1996 .

[11]  Ramana Rao,et al.  Silk from a sow's ear: extracting usable structures from the Web , 1996, CHI.

[12]  Anupam Joshi,et al.  Mining web access logs using a fuzzy relational clustering algorithm based on a robust estimator , 1999, WWW 1999.

[13]  Jim Griffioen,et al.  Reducing File System Latency using a Predictive Approach , 1994, USENIX Summer.

[14]  James E. Pitkow,et al.  Characterizing Browsing Behaviors on the World-Wide Web , 1995 .

[15]  Dan Duchamp,et al.  Prefetching Hyperlinks , 1999, USENIX Symposium on Internet Technologies and Systems.

[16]  Marwan Krunz,et al.  A client side WWW prefetching model , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[17]  Piotr Indyk,et al.  Enhanced hypertext categorization using hyperlinks , 1998, SIGMOD '98.

[18]  Oren Etzioni,et al.  Adaptive Web Sites: Automatically Synthesizing Web Pages , 1998, AAAI/IAAI.

[19]  Jaideep Srivastava,et al.  Data Preparation for Mining World Wide Web Browsing Patterns , 1999, Knowledge and Information Systems.

[20]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[21]  Maurice D. Mulvenna,et al.  Discovering Internet marketing intelligence through online analytical web usage mining , 1998, SGMD.

[22]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[23]  Brian D. Davison Predicting web actions from HTML content , 2002, HYPERTEXT '02.

[24]  Jim Zelenka,et al.  Informed prefetching and caching , 1995, SOSP.

[25]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[26]  Christos Bouras,et al.  Predictive Prefetching on the Web and Its Potential Impact in the Wide Area , 2004, World Wide Web.

[27]  Azer Bestavros,et al.  Using speculation to reduce server load and service time on the WWW , 1995, CIKM '95.

[28]  James E. Pitkow,et al.  Characterizing Browsing Strategies in the World-Wide Web , 1995, Comput. Networks ISDN Syst..

[29]  Oren Etzioni,et al.  Adaptive web sites: cluster mining and conceptual clustering for index page synthesis , 2001 .

[30]  Ramakrishnan Srikant,et al.  The Quest Data Mining System , 1996, KDD.

[31]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[32]  Philip S. Yu,et al.  On disk caching of Web objects in proxy servers , 1997, CIKM '97.

[33]  Jörg Rech,et al.  Knowledge Discovery in Databases , 2001, Künstliche Intell..

[34]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[35]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[36]  Jeffrey C. Mogul,et al.  Using predictive prefetching to improve World Wide Web latency , 1996, CCRV.

[37]  Michael D. Smith,et al.  Using Path Profiles to Predict HTTP Requests , 1998, Comput. Networks.

[38]  Carlos R. Cunha,et al.  Determining WWW user's next access and its application to pre-fetching , 1997, Proceedings Second IEEE Symposium on Computer and Communications.

[39]  T. Joachims WebWatcher : A Tour Guide for the World Wide Web , 1997 .

[40]  Umeshwar Dayal,et al.  From User Access Patterns to Dynamic Hypertext Linking , 1996, Comput. Networks.

[41]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[42]  Themistoklis Palpanas,et al.  Web prefetching using partial match prediction , 1998 .

[43]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[44]  Balaji Padmanabhan,et al.  A Belief-Driven Method for Discovering Unexpected Patterns , 1998, KDD.

[45]  Jaideep Srivastava,et al.  Creating adaptive Web sites through usage-based clustering of URLs , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).

[46]  Virgílio A. F. Almeida,et al.  A methodology for workload characterization of E-commerce sites , 1999, EC '99.

[47]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[48]  Xindong Wu,et al.  SiteHelper: A Localized Agent That Helps Incremental Exploration of the World Wide Web , 1997, Comput. Networks.

[49]  Oren Etzioni,et al.  Adaptive Web Sites: Conceptual Cluster Mining , 1999, IJCAI.