Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

[1]  J. Abraham,et al.  A Mixture Fraction Averaged Approach to Modeling NO and Soot in Diesel Engines , 2001 .

[2]  P. S. Mehta,et al.  Model for prediction of incylinder and exhaust soot emissions from direct injection diesel engines , 1988 .

[3]  H. Ciezki,et al.  Shock-tube investigation of self-ignition of n-heptane - Air mixtures under engine relevant conditions , 1993 .

[4]  D. C. Haworth,et al.  A probability density function method for turbulent mixing and combustion on three-dimensional unstructured deforming meshes , 2000 .

[5]  N. Peters,et al.  Soot Formation in Partially Premixed Diffusion Flames at Atmospheric Pressure , 1994 .

[6]  J. Heywood,et al.  Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines , 1970 .

[7]  Song-Charng Kong,et al.  The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation , 1995 .

[8]  Dennis N. Assanis,et al.  Multi-Dimensional Modeling of NO and Soot Emissions with Detailed Chemistry and Mixing in a Direct Injection Natural Gas Engine , 2002 .

[9]  R. Reitz,et al.  Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions , 1994 .

[10]  B. Hjertager,et al.  On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , 1977 .

[11]  Fabian Mauss,et al.  Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model , 1998 .

[12]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[13]  J. Warnatz,et al.  Numerical Investigation of the Combustion Process in a Direct-Injection Stratified Charge Engine , 1996 .

[14]  D. Foster,et al.  Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine , 2001 .

[15]  B. Magnussen On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow , 1981 .

[16]  P. Ronney,et al.  A Comparison of Ignition Phenomena Modelled with Detailed and Simplified Kinetics , 1993 .

[17]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[18]  J. Abraham,et al.  An Investigation of the Dependence of NO and Soot Formation and Oxidation in Transient Combusting Jets on Injection and Chamber Conditions , 2000 .

[19]  Dennis N. Assanis,et al.  Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry , 1998 .

[20]  A. A. Amsden,et al.  KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves , 1997 .

[21]  M. Wooldridge,et al.  MODELING OF CHEMICAL AND MIXING EFFECTS ON METHANE AUTOIGNITION UNDER DIRECT-INJECTION, STRATIFIED CHARGED CONDITIONS , 2002 .

[22]  S. Wittig,et al.  Soot formation in a shock tube under elevated pressure conditions , 1996 .

[23]  Rolf D. Reitz,et al.  Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections , 1998 .

[24]  T. Poinsot,et al.  Numerical simulations of autoignition in turbulent mixing flows , 1997 .

[25]  Rolf D. Reitz,et al.  Development and testing of diesel engine CFD models , 1995 .

[26]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[27]  J. Naber,et al.  Natural Gas Autoignition Under Diesel Conditions: Experiments and Chemical Kinetic Modeling , 1994 .

[28]  M. Fairweather,et al.  Predictions of soot formation in turbulent, non-premixed propane flames , 1992 .

[29]  Heinz Pitsch,et al.  Numerical Investigation of Soot Formation and Oxidation Under Diesel Engine Conditions , 1995 .

[30]  R. Reitz,et al.  Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects , 2002 .

[31]  K. M. Leung,et al.  A simplified reaction mechanism for soot formation in nonpremixed flames , 1991 .

[32]  Naeim A. Henein,et al.  Correlation of Air Charge Temperature and Ignition Delay for Several Fuels in a Diesel Engine , 1969 .

[33]  Heinz Pitsch,et al.  Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach , 1996 .

[34]  J. Nagle,et al.  OXIDATION OF CARBON BETWEEN 1000–2000°C , 1962 .

[35]  F. Williams,et al.  Ignition times in the theory of branched-chain thermal explosions , 2000 .

[36]  Bruno Dillies,et al.  Direct Injection Diesel Engine Simulation: A Combined Numerical and Experimental Approach from Aerodynamics to Combustion , 1997 .

[37]  Thierry Baritaud,et al.  Extension of Lagrangian-Eulerian Spray Modeling: Application to High Pressure Evaporating Diesel Sprays , 2000 .

[38]  Rolf D. Reitz,et al.  Modelling the Influence of Fuel Injection Parameters on Diesel Engine Emissions , 1998 .

[39]  L. Kirsch,et al.  The autoignition of hydrocarbon fuels at high temperatures and pressures—Fitting of a mathematical model , 1977 .

[40]  P. A. Tesner,et al.  Kinetics of dispersed carbon formation , 1971 .

[41]  Takayuki Ito,et al.  Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation , 2002 .

[42]  Christopher J. Rutland,et al.  LES Modeling of Diesel Engines , 2002 .