Referential Translation Machines for Predicting Translation Quality and Related Statistics

We use referential translation machines (RTMs) for predicting translation performance. RTMs pioneer a language independent approach to all similarity tasks and remove the need to access any task or domain specific information or resource. We improve our RTM models with the

[1]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[2]  Ergun Biçici Referential Translation Machines for Quality Estimation , 2013, WMT@ACL.

[3]  Nello Cristianini,et al.  Estimating the Sentence-Level Quality of Machine Translation Systems , 2009, EAMT.

[4]  Philipp Koehn,et al.  Findings of the 2015 Workshop on Statistical Machine Translation , 2015, WMT@EMNLP.

[5]  Deniz Yuret,et al.  Optimizing Instance Selection for Statistical Machine Translation with Feature Decay Algorithms , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[6]  Ergun Biçici,et al.  RTM-DCU: Predicting Semantic Similarity with Referential Translation Machines , 2015, *SEMEVAL.

[7]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[8]  Josef van Genabith,et al.  Predicting sentence translation quality using extrinsic and language independent features , 2013, Machine Translation.

[9]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[10]  Gideon S. Mann,et al.  Distributed Training Strategies for the Structured Perceptron , 2010, NAACL.

[11]  Josef van Genabith,et al.  USAAR-SHEFFIELD: Semantic Textual Similarity with Deep Regression and Machine Translation Evaluation Metrics , 2015, SemEval@NAACL-HLT.

[12]  Matthew G. Snover,et al.  A Study of Translation Edit Rate with Targeted Human Annotation , 2006, AMTA.

[13]  Ralph Weischedel,et al.  A STUDY OF TRANSLATION ERROR RATE WITH TARGETED HUMAN ANNOTATION , 2005 .

[14]  Andy Way,et al.  Parallel FDA5 for Fast Deployment of Accurate Statistical Machine Translation Systems , 2014, WMT@ACL.

[15]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[16]  Alon Lavie,et al.  METEOR: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments , 2007, WMT@ACL.

[17]  Andy Way,et al.  Referential Translation Machines for Predicting Translation Quality , 2014, WMT@ACL.

[18]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .