Towards a Global Controller Design for Guaranteed Synchronization of Switched Chaotic Systems

Abstract In this paper, synchronization of identical switched chaotic systems is explored based on Lyapunov theory of guaranteed stability. Concepts from robust control principles and switched linear systems are merged together to derive a sufficient condition for synchronization of identical master–slave switched nonlinear chaotic systems and are expressed in the form of bilinear matrix inequalities (BMIs). The nonlinear controller design problem is then recast in the form of linear matrix inequalities (LMIs) to facilitate numerical computation by standard LMI solvers and is illustrated by appropriate examples.

[1]  S. Hara,et al.  Global optimization for H∞ control with constant diagonal scaling , 1998, IEEE Trans. Autom. Control..

[2]  Branislav Jovic Synchronization Techniques for Chaotic Communication Systems , 2011 .

[3]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[4]  Saptarshi Das,et al.  Simulation studies on the design of optimum PID controllers to suppress chaotic oscillations in a family of Lorenz-like multi-wing attractors , 2014, Math. Comput. Simul..

[5]  Brian Ingalls,et al.  Synchronization and Control of Chaos: An Introduction for Scientists and Engineers , 2006 .

[6]  João Pedro Hespanha,et al.  Overcoming the limitations of adaptive control by means of logic-based switching , 2003, Syst. Control. Lett..

[7]  Ashutosh Kumar Singh,et al.  Moment closure techniques for stochastic models in population biology , 2006, 2006 American Control Conference.

[8]  J. Doyle Synthesis of robust controllers and filters , 1983, The 22nd IEEE Conference on Decision and Control.

[9]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[10]  Parlitz,et al.  Encoding messages using chaotic synchronization. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  L. Vandenberghe,et al.  Algorithms and software for LMI problems in control , 1997 .

[12]  Panos J. Antsaklis,et al.  Hybrid System Modeling and Autonomous Control Systems , 1992, Hybrid Systems.

[13]  Shantanu Das,et al.  Master-slave chaos synchronization via optimal fractional order PIλDμ controller with bacterial foraging algorithm , 2012, Nonlinear Dynamics.

[14]  Cuomo,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[15]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[16]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[17]  Ursula Faber,et al.  Controlling Chaos Suppression Synchronization And Chaotification , 2016 .

[18]  Michael G. Safonov,et al.  Global optimization for the Biaffine Matrix Inequality problem , 1995, J. Glob. Optim..

[19]  Jinde Cao,et al.  Cryptography based on delayed chaotic neural networks , 2006 .

[20]  W. Marsden I and J , 2012 .

[21]  Ricardo Femat,et al.  Robust Synchronization of Chaotic Systems via Feedback , 2008 .

[22]  Guanrong Chen,et al.  Chaos Synchronization of General Lur'e Systems via Time-Delay Feedback Control , 2003, Int. J. Bifurc. Chaos.

[23]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[24]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[25]  Karolin Papst,et al.  Stability Theory Of Switched Dynamical Systems , 2016 .

[26]  Hai Lin,et al.  Switched Linear Systems: Control and Design , 2006, IEEE Transactions on Automatic Control.

[27]  Masakazu Kojima,et al.  Branch-and-Cut Algorithms for the Bilinear Matrix Inequality Eigenvalue Problem , 2001, Comput. Optim. Appl..

[28]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[29]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[30]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[31]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[32]  J.P. Hespanha,et al.  Lognormal Moment Closures for Biochemical Reactions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[33]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[34]  Tetsuya Iwasaki,et al.  The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..

[35]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[36]  Hsien-Keng Chen,et al.  Global chaos synchronization of new chaotic systems via nonlinear control , 2005 .

[37]  Jinde Cao,et al.  Synchronization of switched system and application in communication , 2008 .

[38]  L. Coelho,et al.  An improved harmony search algorithm for synchronization of discrete-time chaotic systems , 2009 .

[39]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[40]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[41]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[42]  Huaguang Zhang,et al.  Controlling Chaos: Suppression, Synchronization and Chaotification , 2009 .

[43]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[44]  M. Yassen Controlling chaos and synchronization for new chaotic system using linear feedback control , 2005 .

[45]  Saptarshi Das,et al.  Design of hybrid regrouping PSO–GA based sub-optimal networked control system with random packet losses , 2013, Memetic Comput..

[46]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[47]  Silvano Donati,et al.  Synchronization of chaotic injected-laser systems and its application to optical cryptography , 1996 .