Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448 THz. The local oscillator is a third-order distributed feedback quantum cascade laser operating in continuous wave mode at 4.741 THz. A quasi-optical, superconducting NbN hot electron bolometer is used as the mixer. We recorded a double sideband receiver noise temperature (T-rec(DSB)) of 815 K, which is similar to 7 times the quantum noise limit (hv/2k(B)) and an Allan variance time of 15 s at an effective noise fluctuation bandwidth of 18 MHz. Heterodyne performance was confirmed by measuring a methanol line spectrum. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774085]

[1]  Andrey M. Baryshev,et al.  A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer , 2005 .

[2]  R. Barends,et al.  Current-induced vortex unbinding in bolometer mixers , 2005 .

[3]  Sergey Cherednichenko,et al.  Hot-electron bolometer terahertz mixers for the Herschel Space Observatory. , 2008, The Review of scientific instruments.

[4]  Mattias Beck,et al.  Low divergence Terahertz photonic-wire laser. , 2010, Optics express.

[5]  M. Justen,et al.  Terahertz hot electron bolometer waveguide mixers for GREAT , 2012, 1204.2381.

[6]  Qing Hu,et al.  Terahertz tomography using quantum-cascade lasers. , 2012, Optics letters.

[7]  T. M. Klapwijk,et al.  Terahertz heterodyne spectrometer using a quantum cascade laser , 2010 .

[8]  S. Weinreb,et al.  The Stratospheric THz Observatory (STO) , 2010, Astronomical Telescopes + Instrumentation.

[9]  Brian J. Drouin,et al.  Torsion–rotation global analysis of the first three torsional states (νt = 0, 1, 2) and terahertz database for methanol , 2008 .

[10]  T. Klapwijk,et al.  Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz , 2010 .

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  D. J. Hayton,et al.  Stabilized hot electron bolometer heterodyne receiver at 2.5 THz , 2012 .

[13]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[14]  U. U. Graf,et al.  GREAT: the SOFIA high-frequency heterodyne instrument , 2012, 1203.2845.

[15]  T. M. Klapwijk,et al.  High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz , 2011 .

[16]  A. L. Betz,et al.  Heterodyne Spectroscopy of the 63 μm O I Line in M42 , 1996, astro-ph/9603136.

[17]  Boris S. Karasik,et al.  Conversion gain and noise of niobium superconducting hot-electron-mixers , 1995 .

[18]  David A. Ritchie,et al.  Submegahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line , 2010 .

[19]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[20]  Qing Hu,et al.  Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell , 2012 .

[21]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[22]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[23]  Qing Hu,et al.  Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers. , 2012, Optics letters.

[24]  Massimo Inguscio,et al.  Quantum-limited frequency fluctuations in a terahertz laser , 2012, Nature Photonics.

[25]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .