PHI: A powerful new program for the analysis of anisotropic monomeric and exchange‐coupled polynuclear d‐ and f‐block complexes

A new program, PHI, with the ability to calculate the magnetic properties of large spin systems and complex orbitally degenerate systems, such as clusters of d‐block and f‐block ions, is presented. The program can intuitively fit experimental data from multiple sources, such as magnetic and spectroscopic data, simultaneously. PHI is extensively parallelized and can operate under the symmetric multiprocessing, single process multiple data, or GPU paradigms using a threaded, MPI or GPU model, respectively. For a given problem PHI is been shown to be almost 12 times faster than the well‐known program MAGPACK, limited only by available hardware. © 2013 Wiley Periodicals, Inc.

[1]  W. Wernsdorfer,et al.  Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. , 2011, Journal of the American Chemical Society.

[2]  M. E. Lines,et al.  Orbital Angular Momentum in the Theory of Paramagnetic Clusters , 1971 .

[3]  Guanghua Li,et al.  Synthesis, structures, and magnetic properties of three fluoride-bridged lanthanide compounds: effect of bridging fluoride ions on magnetic behaviors. , 2012, Inorganic chemistry.

[4]  M. Thorpe,et al.  Orbital Effects on Exchange Interactions , 1968 .

[5]  J. Mulak,et al.  The Effective Crystal Field Potential , 2000 .

[6]  Liviu F Chibotaru,et al.  The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. , 2008, Angewandte Chemie.

[7]  O. Kahn Exchange interaction between orbitally degenerate ions Case of two 2 P ions , 1975 .

[8]  N. Karayianis Effective Spin–Orbit Hamiltonian , 1970 .

[9]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .

[10]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[11]  L. Chibotaru,et al.  Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles , 2009 .

[12]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[13]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[14]  Fu-Sheng Guo,et al.  The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. , 2012, Inorganic chemistry.

[15]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[16]  Ju-Hyun Park,et al.  High-frequency and -field EPR spectroscopy of tris(2,4-pentanedionato)manganese(III): investigation of solid-state versus solution Jahn-Teller effects. , 2003, Inorganic chemistry.

[17]  Christiane Görller-Walrand,et al.  Chapter 155 Rationalization of crystal-field parametrization , 1996 .

[18]  K. Murray,et al.  Planar tetranuclear lanthanide clusters with the Dy4 analogue displaying slow magnetic relaxation. , 2011, Dalton transactions.

[19]  Dimitris G. Papageorgiou,et al.  A numerical differentiation library exploiting parallel architectures ✩ , 2009 .

[20]  H. Schilder,et al.  Computerized magnetic studies on d, f, d–d, f–f, and d–S, f–S systems under varying ligand and magnetic fields , 2004 .

[21]  R. B. Zipin,et al.  Principles of Atomic Spectra , 1968 .

[22]  J. Mulak,et al.  The maximal axial components in the equivalent parametrizations of crystal‐field Hamiltonians , 2006 .

[23]  L. Chibotaru,et al.  Structure, magnetism and theory of a family of nonanuclear Cu(II)5Ln(III)4-triethanolamine clusters displaying single-molecule magnet behaviour. , 2011, Chemistry.

[24]  K. Murray,et al.  Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour. , 2011, Dalton transactions.

[25]  D. Machin,et al.  Magnetism and transition metal complexes , 1973 .

[26]  R. Boča Theoretical foundations of molecular magnetism , 1999 .

[27]  Levitt,et al.  Computation of Orientational Averages in Solid-State NMR by Gaussian Spherical Quadrature. , 1998, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[28]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[29]  W. Wernsdorfer,et al.  Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. , 2011, Journal of the American Chemical Society.

[30]  J. Rasch,et al.  Efficient Storage Scheme for Precalculated Wigner 3j, 6j and Gaunt Coefficients , 2003, SIAM J. Sci. Comput..

[31]  H. Bolvin An alternative approach to the g-matrix: theory and applications. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  G. Webb,et al.  The magnetic behaviour of cubic field 5T2g terms in lower symmetry , 1967 .

[33]  F. Tuna,et al.  Pentametallic lanthanide-alkoxide square-based pyramids: high energy barrier for thermal relaxation in a holmium single molecule magnet. , 2011, Chemical communications.

[34]  K. Murray,et al.  Synthesis, structural and magnetic studies of an isostructural family of mixed 3d/4f tetranuclear 'star' clusters. , 2010, Chemical communications.

[35]  Eric J. Kelmelis,et al.  CULA: hybrid GPU accelerated linear algebra routines , 2010, Defense + Commercial Sensing.

[36]  B. Figgis,et al.  Ligand Field Theory and Its Applications , 1999 .

[37]  M. P. Levin,et al.  Numerical Recipes In Fortran 90: The Art Of Parallel Scientific Computing , 1998, IEEE Concurrency.

[38]  Joan Cano,et al.  Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application , 2008 .

[39]  G. Webb,et al.  The magnetic behaviour of cubic field 3T1g terms , 1966 .

[40]  M. Gerloch,et al.  Paramagnetic properties of unsymmetrical transition-metal complexes , 1975 .

[41]  Eugenio Coronado,et al.  Magnetic exchange interaction in clusters of orbitally degenerate ions. I. Effective Hamiltonian , 2001 .

[42]  J. Long,et al.  A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. , 2011, Journal of the American Chemical Society.

[43]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[44]  Juan M. Clemente-Juan,et al.  MAGPACK1 A package to calculate the energy levels, bulk magnetic properties, and inelastic neutron scattering spectra of high nuclearity spin clusters , 2001, J. Comput. Chem..

[45]  K. Murray,et al.  Unusual oxidation state distributions observed for two mixed-valence heptanuclear manganese disc-like clusters. , 2012, Dalton transactions.

[46]  B. Figgis Magnetic properties of transition metal ions in asymmetric ligand fields. Part 1.—Cubic field A and E terms , 1960 .

[47]  R. Boča Zero-field splitting in metal complexes , 2004 .

[48]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[49]  K. Murray,et al.  Structure and magnetic exchange in heterometallic 3d-3d transition metal triethanolamine clusters. , 2012, Dalton transactions.

[50]  J. J. Borrás-Almenar,et al.  High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra. , 1999, Inorganic chemistry.

[51]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[52]  D. Gatteschi,et al.  MAGNETIC PROPERTIES OF HIGH NUCLEARITY SPIN CLUSTERS. A FAST AND EFFICIENTPROCEDURE FOR THE CALCULATION OF THE ENERGY LEVELS , 1993 .

[53]  Liviu F Chibotaru,et al.  A non-sandwiched macrocyclic monolanthanide single-molecule magnet: the key role of axiality. , 2011, Chemistry.