Hydrodynamics in two dimensions and vortex theory

We consider the Navier-Stokes equation for a viscous and incompressible fluid inR2. We show that such an equation may be interpreted as a mean field equation (Vlasov-like limit) for a system of particles, called vortices, interacting via a logarithmic potential, on which, in addition, a stochastic perturbation is acting. More precisely we prove that the solutions of the Navier-Stokes equation may be approximated, in a suitable way, by finite dimensional diffusion processes with the diffusion constant related to the viscosity. As a particular case, when the diffusion constant is zero, the finite dimensional theory reduces to the usual deterministic vortex theory, and the limiting equation reduces to the Euler equation.