Shape Representation as the Intersection of n-k Hypersurfaces
暂无分享,去创建一个
[1] M. Gage,et al. The Curve Shortening Flow , 1987 .
[2] Baba C. Vemuri,et al. Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[3] Olivier Faugeras,et al. Reconciling Distance Functions and Level Sets , 2000, J. Vis. Commun. Image Represent..
[4] Guillermo Sapiro,et al. Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[5] M. Gage. Curve shortening makes convex curves circular , 1984 .
[6] I. Holopainen. Riemannian Geometry , 1927, Nature.
[7] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[8] J. Sethian. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .
[9] Benjamin B. Kimia,et al. Shock-Based Reaction-Diffusion Bubbles for Image Segmentation , 1995, CVRMed.
[10] H. Soner,et al. Level set approach to mean curvature flow in arbitrary codimension , 1996 .
[11] T. Chan,et al. A Variational Level Set Approach to Multiphase Motion , 1996 .
[12] Guillermo Sapiro,et al. 3D active contours , 1996 .
[13] J. Sethian. METHODS FOR PROPAGATING INTERFACES , 1998 .
[14] V. Caselles,et al. Snakes in Movement , 1996 .
[15] Olivier D. Faugeras,et al. Co-dimension 2 Geodesic Active Contours for MRA Segmentation , 1999, IPMI.
[16] G. Sapiro,et al. On affine plane curve evolution , 1994 .
[17] Rachid Deriche,et al. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[18] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[19] O. Faugeras,et al. Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..
[20] O. Faugeras,et al. Reconciling distance functions and level sets , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..
[21] Géométrie : catastrophes et bifurcations , 1987 .
[22] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[23] Andrew J. Majda,et al. Wave Motion: Theory, Modelling, and Computation , 1987 .