Shape Representation as the Intersection of n-k Hypersurfaces

We investigate the feasibility of representing implicitly a k-dimensional manifold embedded in the Euclidean space $\mathbb{R}^n$ as the intersection of n-k transverse hypersurfaces. From the analytical point of view, the embedded manifold is defined as the inverse image of a regular value of a vector function. This approach is a priori appealing since the corresponding function is differentiable at any point of the embedded manifold. We focus on time-dependent manifolds and establish the link between the velocity field of the evolving manifold and a Partial Differential Equation (PDE) satisfied by its describing function.

[1]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[2]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Olivier Faugeras,et al.  Reconciling Distance Functions and Level Sets , 2000, J. Vis. Commun. Image Represent..

[4]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  M. Gage Curve shortening makes convex curves circular , 1984 .

[6]  I. Holopainen Riemannian Geometry , 1927, Nature.

[7]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[8]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[9]  Benjamin B. Kimia,et al.  Shock-Based Reaction-Diffusion Bubbles for Image Segmentation , 1995, CVRMed.

[10]  H. Soner,et al.  Level set approach to mean curvature flow in arbitrary codimension , 1996 .

[11]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[12]  Guillermo Sapiro,et al.  3D active contours , 1996 .

[13]  J. Sethian METHODS FOR PROPAGATING INTERFACES , 1998 .

[14]  V. Caselles,et al.  Snakes in Movement , 1996 .

[15]  Olivier D. Faugeras,et al.  Co-dimension 2 Geodesic Active Contours for MRA Segmentation , 1999, IPMI.

[16]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[17]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[19]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[20]  O. Faugeras,et al.  Reconciling distance functions and level sets , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[21]  Géométrie : catastrophes et bifurcations , 1987 .

[22]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[23]  Andrew J. Majda,et al.  Wave Motion: Theory, Modelling, and Computation , 1987 .