Automated delineation of agricultural field boundaries from Sentinel-2 images using recurrent residual U-Net

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[3]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[4]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[5]  Alfred Stein,et al.  Recurrent Multiresolution Convolutional Networks for VHR Image Classification , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[6]  John Ray Bergado,et al.  Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping , 2019, Remote sensing of environment.

[7]  Mustafa Türker,et al.  Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping , 2013 .

[8]  Yun Shi,et al.  3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images , 2018, Remote. Sens..

[9]  Jungho Im,et al.  Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification , 2010 .

[10]  George Vosselman,et al.  A deep learning approach to DTM extraction from imagery using rule-based training labels , 2018 .

[11]  Ali Feizollah,et al.  Evaluation of machine learning classifiers for mobile malware detection , 2014, Soft Computing.

[12]  Shiming Xiang,et al.  Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[13]  ByungSoo Ko,et al.  Naive semi-supervised deep learning using pseudo-label , 2018, Peer-to-Peer Networking and Applications.

[14]  Amit Verma,et al.  An Efficient Edge Detection Approach to Provide Better Edge Connectivity for Image Analysis , 2019, IEEE Access.

[15]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[16]  Adriaan Van Niekerk,et al.  A comparison of object-based image analysis approaches for field boundary delineation using multi-temporal Sentinel-2 imagery , 2019, Comput. Electron. Agric..

[17]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[18]  Marina Mueller,et al.  Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery , 2004, Pattern Recognit..

[19]  Mark Berman,et al.  Segmenting multispectral Landsat TM images into field units , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  Yong Jiang,et al.  Fast mutual modulation fusion for multi-sensor images , 2015 .

[21]  Michael Kampffmeyer,et al.  Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[22]  Jordan Graesser,et al.  Detection of cropland field parcels from Landsat imagery , 2017 .

[23]  Bin Chen,et al.  Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. , 2019, Science bulletin.

[24]  Lorenzo Bruzzone,et al.  A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[25]  H. Mcnairn,et al.  Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier , 2018 .

[26]  Pedro Antonio Gutiérrez,et al.  Object-Based Image Classification of Summer Crops with Machine Learning Methods , 2014, Remote. Sens..

[27]  Christopher O. Justice,et al.  Estimating Global Cropland Extent with Multi-year MODIS Data , 2010, Remote. Sens..

[28]  J. Tollefson Seven billion and counting , 2011, Nature.

[29]  Peter Caccetta,et al.  ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[30]  Uwe Stilla,et al.  Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[31]  Haipeng Wang,et al.  Target Classification Using the Deep Convolutional Networks for SAR Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Lin Yan,et al.  Automated crop field extraction from multi-temporal Web Enabled Landsat Data , 2014 .

[33]  Martin Volk,et al.  The comparison index: A tool for assessing the accuracy of image segmentation , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[34]  M. Perkuhn,et al.  Automated Meningioma Segmentation in Multiparametric MRI , 2020, Clinical Neuroradiology.

[35]  Vijayan K. Asari,et al.  Improved inception-residual convolutional neural network for object recognition , 2017, Neural Computing and Applications.

[36]  François Waldner,et al.  Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network , 2019, ArXiv.

[37]  Mariana Belgiu,et al.  Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis , 2018 .

[38]  Curt H. Davis,et al.  Training Deep Convolutional Neural Networks for Land–Cover Classification of High-Resolution Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[39]  Lei Guo,et al.  When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Steffen Fritz,et al.  Estimating the global distribution of field size using crowdsourcing , 2018, Global change biology.

[41]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Consuelo Gonzalo-Martin,et al.  A machine learning approach for agricultural parcel delineation through agglomerative segmentation , 2017 .

[44]  Fan Xia,et al.  Assessing object-based classification: advantages and limitations , 2009 .

[45]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[46]  Bo Chen,et al.  Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty , 2015, Remote. Sens..

[47]  Paola Passalacqua,et al.  Learning a River Network Extractor Using an Adaptive Loss Function , 2018, IEEE Geoscience and Remote Sensing Letters.

[48]  Felix Rembold,et al.  Analysis of GAC NDVI Data for Cropland Identification and Yield Forecasting in Mediterranean African Countries , 2001 .

[49]  Jianping Fan,et al.  Automatic image segmentation by integrating color-edge extraction and seeded region growing , 2001, IEEE Trans. Image Process..

[50]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[51]  Md Zahangir Alom,et al.  Recurrent residual U-Net for medical image segmentation , 2019, Journal of medical imaging.

[52]  L. Joshua Leon,et al.  Watershed-Based Segmentation and Region Merging , 2000, Comput. Vis. Image Underst..

[53]  Guifeng Zhang,et al.  An Edge Embedded Marker-Based Watershed Algorithm for High Spatial Resolution Remote Sensing Image Segmentation , 2010, IEEE Transactions on Image Processing.

[54]  Zhang Miao,et al.  Research on Crop Identification Using Multi-temporal NDVI HJ Images , 2015 .

[55]  David Morin,et al.  An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series , 2015, Remote. Sens..

[56]  Camille Couprie,et al.  Learning Hierarchical Features for Scene Labeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  R. Congalton,et al.  Integrating cloud-based workflows in continental-scale cropland extent classification , 2018, Remote Sensing of Environment.

[58]  Mutlu Ozdogan,et al.  Large area cropland extent mapping with Landsat data and a generalized classifier , 2018, Remote Sensing of Environment.

[59]  Huashan Liu,et al.  A Novel Post-Processing Method Based on a Weighted Composite Filter for Enhancing Semantic Segmentation Results , 2020, Sensors.

[60]  Qing Liu,et al.  Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Stéphane Dupuy,et al.  A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM) , 2017, Remote. Sens..

[62]  R. Congalton,et al.  Automated cropland mapping of continental Africa using Google Earth Engine cloud computing , 2017 .

[63]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  S. Weise,et al.  Effectiveness of agro-ecological intensification practices in managing pests in smallholder banana systems in East and Central Africa , 2013 .

[65]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[66]  Claudio Persello,et al.  Delineation of Agricultural Field Boundaries from Sentinel-2 Images Using a Novel Super-Resolution Contour Detector Based on Fully Convolutional Networks , 2019, Remote. Sens..

[67]  Gunilla Borgefors,et al.  Integrated method for boundary delineation of agricultural fields in multispectral satellite images , 2000, IEEE Trans. Geosci. Remote. Sens..