Simulated hail impacts on flexible photovoltaic laminates: testing and modelling

The problem of simulated low-velocity hail impacts on flexible photovoltaic (PV) modules resting on a substrate with variable stiffness is investigated. For this type of PV module it is shown that the prescriptions of the IEC 61215 International Standard for quality control used for rigid (glass-covered) PV modules should be augmented by taking into account their real mounting condition and the stiffness of the substrate in the simulated hail impact tests. Moreover, electroluminescence inspection of the crack pattern should be made in addition to electric power output measurements. An implicit finite element simulation of the contact problem in dynamics is also proposed, with two different degrees of accuracy, to interpret the experimentally observed extension of cracking. Results pinpoint the important role of stress wave propagation and reflection in the case of soft substrates.

[1]  Ares J. Rosakis,et al.  Impact failure characteristics in sandwich structures. Part II: Effects of impact speed and interfacial strength , 2002 .

[2]  Long Chen FINITE ELEMENT METHOD , 2013 .

[3]  M. Richardson,et al.  Review of low-velocity impact properties of composite materials , 1996 .

[4]  Ares J. Rosakis,et al.  Impact failure characteristics in sandwich structures: Part I: Basic failure mode selection , 2002 .

[5]  Marco Paggi,et al.  A thermo-visco-elastic shear-lag model for the prediction of residual stresses in photovoltaic modules after lamination , 2016 .

[6]  Alberto Giuseppe Sapora,et al.  An Accurate Thermoviscoelastic Rheological Model for Ethylene Vinyl Acetate Based on Fractional Calculus , 2015 .

[7]  Marco Paggi,et al.  A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules , 2013, 1303.7452.

[8]  M. Paggi,et al.  A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates , 2016, Computational Mechanics.

[9]  Marco Anghileri,et al.  A survey of numerical models for hail impact analysis using explicit finite element codes , 2005 .

[10]  E. E. van Dyk,et al.  Assessing the reliability and degradation of photovoltaic module performance parameters , 2004, IEEE Transactions on Reliability.

[11]  S. Sánchez-Sáez,et al.  Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core , 2013 .

[12]  A. Wilson,et al.  Simulated hail impact testing of photovoltaic solar panels , 1978 .

[13]  Robin Olsson,et al.  High Velocity Hail Impact on Composite Laminates – Modelling and Testing , 2013 .

[14]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[15]  Serge Abrate,et al.  Modeling of impacts on composite structures , 2001 .

[16]  Marco Paggi,et al.  A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads , 2016 .

[17]  Ares J. Rosakis,et al.  3D Modelling of Impact Failure in Sandwich Structures , 2003 .

[18]  Wesley J. Cantwell,et al.  The low velocity impact response of foam-based sandwich structures , 2002 .

[19]  J. Barbera,et al.  Contact mechanics , 1999 .

[20]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[21]  Riccardo Nelva,et al.  L'effetto della grandine su cupole e lucernari , 2009 .

[22]  Marco Paggi,et al.  A coupled cohesive zone model for transient analysis of thermoelastic interface debonding , 2014, 1410.0242.

[23]  Hyonny Kim,et al.  Modeling Hail Ice Impacts and Predicting Impact Damage Initiation in Composite Structures , 2000 .

[24]  Keith T. Kedward,et al.  Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels , 2003 .

[25]  P. Wriggers,et al.  FINITE ELEMENT FORMULATION OF LARGE DEFORMATION IMPACT-CONTACT PROBLEMS WITH FRICTION , 1990 .

[26]  P. Wriggers Computational contact mechanics , 2012 .

[27]  Marco Paggi,et al.  A Generalized Electric Model for Mono and Polycrystalline Silicon in the Presence of Cracks and Random Defects , 2014 .

[28]  M. Paggi,et al.  Thermomechanical deformations in photovoltaic laminates , 2011 .

[29]  M. Paggi,et al.  Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules , 2014, Scientific Reports.