Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.

[1]  J. Hoch,et al.  Alterations in the flow of one‐carbon units affect KinB‐dependent sporulation in Bacillus subtilis , 1997, Molecular microbiology.

[2]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[3]  Yigong Shi,et al.  A structural basis for mutational inactivation of the tumour suppressor Smad4 , 1997, Nature.

[4]  J. Thornton,et al.  Discriminating between homodimeric and monomeric proteins in the crystalline state , 2000, Proteins.

[5]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Breaker,et al.  Cooperative binding of effectors by an allosteric ribozyme. , 2001, Nucleic acids research.

[7]  Hanne Jarmer,et al.  Definition of the Bacillus subtilisPurR Operator Using Genetic and Bioinformatic Tools and Expansion of the PurR Regulon with glyA, guaC,pbuG, xpt-pbuX, yqhZ-folD, and pbuO , 2001, Journal of bacteriology.

[8]  L. T. Stauffer,et al.  Glycine binds the transcriptional accessory protein GcvR to disrupt a GcvA/GcvR interaction and allow GcvA-mediated activation of the Escherichia coli gcvTHP operon. , 2002, Microbiology.

[9]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[10]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[11]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[12]  J. Janin,et al.  A dissection of specific and non-specific protein-protein interfaces. , 2004, Journal of molecular biology.

[13]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.

[14]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[15]  X-Ray Analysis of the Magnesium-containing Endonuclease from Serratia marcescens , 2001, Russian Journal of Bioorganic Chemistry.

[16]  Ricardo Ciria,et al.  Conserved regulatory motifs in bacteria: riboswitches and beyond. , 2004, Trends in genetics : TIG.

[17]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[18]  J. Williamson,et al.  RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. , 2004, Journal of molecular biology.

[19]  Dan Mercola,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004 .

[20]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[21]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[22]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[23]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[24]  E. Westhof,et al.  Topology of three-way junctions in folded RNAs. , 2006, RNA.

[25]  A. Ferré-D’Amaré,et al.  Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate , 2006, Science.

[26]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[27]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[28]  E. Appella,et al.  Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: Application to adaptor protein complexes in cell signaling , 2007, Protein science : a publication of the Protein Society.

[29]  S. Strobel,et al.  Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. , 2007, Chemistry & biology.

[30]  Sebastian Doniach,et al.  Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. , 2007, Journal of molecular biology.

[31]  A. Serganov,et al.  Ribozymes, riboswitches and beyond: regulation of gene expression without proteins , 2007, Nature Reviews Genetics.

[32]  R. Batey,et al.  Structure of the SAM-II riboswitch bound to S-adenosylmethionine , 2008, Nature Structural &Molecular Biology.

[33]  A. Serganov,et al.  Structural insights into amino acid binding and gene control by a lysine riboswitch , 2008, Nature.

[34]  N. Ban,et al.  Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. , 2008, Journal of the American Chemical Society.

[35]  D. Herschlag,et al.  Direct measurement of tertiary contact cooperativity in RNA folding. , 2008, Journal of the American Chemical Society.

[36]  Scott A Strobel,et al.  Chemical basis of glycine riboswitch cooperativity. , 2007, RNA.

[37]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[38]  R. Batey,et al.  Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element* , 2008, Journal of Biological Chemistry.

[39]  A. Serganov,et al.  Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch , 2009, Nature.

[40]  Alan Brown Analysis of Cooperativity by Isothermal Titration Calorimetry , 2009, International journal of molecular sciences.

[41]  A. Serganov,et al.  Amino acid recognition and gene regulation by riboswitches. , 2009, Biochimica et biophysica acta.

[42]  P. Bevilacqua,et al.  Thinking inside the box: designing, implementing, and interpreting thermodynamic cycles to dissect cooperativity in RNA and DNA folding. , 2009, Methods in enzymology.

[43]  R. Breaker,et al.  Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. , 2009, Environmental microbiology.

[44]  R. Montange,et al.  Free state conformational sampling of the SAM-I riboswitch aptamer domain. , 2010, Structure.

[45]  Adelene Y. L. Sim,et al.  Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding. , 2010, RNA.