Iron Additions Reduce Sulfate Reduction Rates and Improve Seagrass Growth on Organic-Enriched Carbonate Sediments

[1]  T. Binzer,et al.  Sulphide intrusion in eelgrass (Zostera marina L.) , 2004 .

[2]  Fei-xue Fu,et al.  Growth, N2 fixation and photosynthesis in a cyanobacterium, Trichodesmium sp., under Fe stress , 2004, Biotechnology Letters.

[3]  N. Marbà,et al.  Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments , 2003 .

[4]  Lance C Seefeldt,et al.  Nitrogen Fixation: The Mechanism of the Mo-Dependent Nitrogenase , 2003, Critical reviews in biochemistry and molecular biology.

[5]  N. Marbà,et al.  Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain) , 2002, Environmental Conservation.

[6]  D. Burdige,et al.  Impact of sea grass density on carbonate dissolution in Bahamian sediments , 2002 .

[7]  Søren Laurentius Nielsen,et al.  Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal waters , 2002 .

[8]  C. Duarte The future of seagrass meadows , 2002, Environmental Conservation.

[9]  S. Macko,et al.  Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment , 2001 .

[10]  M. Holmer,et al.  Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events , 2001 .

[11]  F. Short Chapter 8 – Methods for the measurement of seagrass growth and production , 2001 .

[12]  F. Short,et al.  Global seagrass research methods , 2001 .

[13]  Lee,et al.  Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics. , 2000, Journal of experimental marine biology and ecology.

[14]  M. Koch,et al.  Sulfide effects on Thalassia testudinum carbon balance and adenylate energy charge , 2000 .

[15]  J. Romero,et al.  Nutrient mass balance of the seagrass Posidonia oceanica: the importance of nutrient retranslocation , 2000 .

[16]  B. Thamdrup Bacterial Manganese and Iron Reduction in Aquatic Sediments , 2000 .

[17]  D. Welsh Nitrogen fixation in seagrass meadows: Regulation, plant–bacteria interactions and significance to primary productivity , 2000 .

[18]  L. M. Walter,et al.  Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A. , 1999 .

[19]  M. Holmer The Effect of Oxygen Depletion on Anaerobic Organic Matter Degradation in Marine Sediments , 1999 .

[20]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[21]  R. Howarth,et al.  Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds , 1998 .

[22]  Núria Marbà,et al.  Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast:elucidating seagrass decline , 1996 .

[23]  Frederick T. Short,et al.  Natural and human-induced disturbance of seagrasses , 1996, Environmental Conservation.

[24]  C. Duarte,et al.  Evidence of iron deficiency in seagrasses growing above carbonate sediments , 1995 .

[25]  W. Dennison,et al.  Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon , 1995 .

[26]  B. Thamdrup,et al.  Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics , 1994 .

[27]  Míkel Zabala,et al.  El Bentos: el marc físic , 1993 .

[28]  J. Tomás,et al.  Història natural de l'Arxipelag de Cabrera , 1993 .

[29]  Javier Romero,et al.  Preliminary Data on Alkaline Phosphatase Activity Associated with Mediterranean Seagrasses , 1993 .

[30]  C. Duarte Nutrient concentration of aquatic plants: Patterns across species , 1992 .

[31]  C. Duarte Seagrass nutrient content , 1990 .

[32]  B. Jørgensen,et al.  Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method , 1989 .

[33]  B. Jørgensen,et al.  Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments , 1989 .

[34]  T. Sawyer,et al.  Anaerobic metabolism and oxygen distribution in the carbonate sediments of a submarine canyon , 1989 .

[35]  D. Lovley,et al.  Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments , 1987, Applied and environmental microbiology.

[36]  C. Oviatt,et al.  Fate and effects of sewage sludge in the coastal marine environment: A mesocosm experiment , 1987 .

[37]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[38]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[39]  A. Cembella,et al.  The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. , 1984, Critical reviews in microbiology.

[40]  J. Sørensen Reduction of Ferric Iron in Anaerobic, Marine Sediment and Interaction with Reduction of Nitrate and Sulfate , 1982, Applied and environmental microbiology.

[41]  C. Bower,et al.  A Salicylate–Hypochlorite Method for Determining Ammonia in Seawater , 1980 .

[42]  D. McCorkle,et al.  Gas Exchange, Photosynthetic Uptake, and Carbon Budget for a Radiocarbon Addition to a Small Enclosure in a Stratified Lake , 1980 .

[43]  Jørgensen BoBarker A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments , 1978 .

[44]  Bo Barker J⊘rgensen A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments: III. Estimation from chemical and bacteriological field data , 1978 .

[45]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[46]  Joel D. Cline,et al.  SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1 , 1969 .