Statistical methods for the analysis of the genetics of gene expression

[1]  V. Zídek,et al.  Genetic isolation of a chromosome 1 region affecting blood pressure in the spontaneously hypertensive rat. , 1997, Hypertension.

[2]  김동일,et al.  LARS(Least Angle Regression)와 유전알고리즘을 결합한 변수 선택 알고리즘 , 2009 .

[3]  N. Yi,et al.  Bayesian LASSO for Quantitative Trait Loci Mapping , 2008, Genetics.

[4]  Daniel Levy,et al.  Long-term trends in the incidence of and survival with heart failure. , 2002, The New England journal of medicine.

[5]  D. Clayton,et al.  A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region , 2006, Nature Genetics.

[6]  V. Zídek,et al.  Chromosomal mapping of a major quantitative trait locus regulating compensatory renal growth in the rat. , 2000, Journal of the American Society of Nephrology : JASN.

[7]  D. Simmons,et al.  Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. , 1993, Blood.

[8]  H. Mcdevitt,et al.  Interferon-α initiates type 1 diabetes in nonobese diabetic mice , 2008, Proceedings of the National Academy of Sciences.

[9]  R. Khalil,et al.  Gender, sex hormones, and vascular tone. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[10]  John A. Todd,et al.  Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13 , 2008, Biostatistics.

[11]  E. Lander The New Genomics: Global Views of Biology , 1996, Science.

[12]  H. Ropers New perspectives for the elucidation of genetic disorders. , 2007, American journal of human genetics.

[13]  S. Mccune,et al.  Plasma renin activity in heart failure-prone SHHF/Mcc-facp rats. , 1997, The American journal of physiology.

[14]  K. Gunderson,et al.  Illumina universal bead arrays. , 2006, Methods in enzymology.

[15]  M. Herrath Diabetes: A virus–gene collaboration , 2009, Nature.

[16]  C. Haley,et al.  A simple regression method for mapping quantitative trait loci in line crosses using flanking markers , 1992, Heredity.

[17]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .

[18]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[19]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[20]  Andrew B. Nobel,et al.  Significance analysis of functional categories in gene expression studies: a structured permutation approach , 2005, Bioinform..

[21]  H. Akaike A new look at the statistical model identification , 1974 .

[22]  Marit Holden,et al.  GSEA-SNP: applying gene set enrichment analysis to SNP data from genome-wide association studies , 2008, Bioinform..

[23]  M. Vingron,et al.  Quantifying the effect of sequence variation on regulatory interactions , 2010, Human mutation.

[24]  D. Kelly,et al.  Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. , 1996, Circulation.

[25]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[26]  Wei Li Analyzing Gene Expression Data in Terms of Gene Sets: Gene Set Enrichment Analysis , 2009 .

[27]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[28]  M. Soller,et al.  The Efficiency of Experimental Designs for the Detection of Linkage between a Marker Locus and a Locus Affecting a Quantitative Trait in Segregating Populations , 1978 .

[29]  Nathan Mantel,et al.  Chi-square tests with one degree of freedom , 1963 .

[30]  P Klír,et al.  An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. , 1989, Journal of hypertension.

[31]  G. Box NON-NORMALITY AND TESTS ON VARIANCES , 1953 .

[32]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[33]  Robert Pavur,et al.  A new statistic in the one-way multivariate analysis of variance , 1985 .

[34]  Chester L. Olson,et al.  Comparative Robustness of Six Tests in Multivariate Analysis of Variance , 1974 .

[35]  A. Monaco,et al.  Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene , 1986, Nature.

[36]  Amos Tanay,et al.  Extensive low-affinity transcriptional interactions in the yeast genome. , 2006, Genome research.

[37]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[38]  T. Kurtz,et al.  Genetic analysis of metabolic defects in the spontaneously hypertensive rat , 2002, Mammalian Genome.

[39]  E. Blasi,et al.  Structural, functional, and molecular characterization of the SHHF model of heart failure. , 2002, American journal of physiology. Heart and circulatory physiology.

[40]  R. Jansen,et al.  Interval mapping of multiple quantitative trait loci. , 1993, Genetics.

[41]  J. Naylor,et al.  Mendelian inheritance in man: A catalog of human genes and genetic disorders , 1996 .

[42]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[43]  J. Ibrahim,et al.  Genomewide Multiple-Loci Mapping in Experimental Crosses by Iterative Adaptive Penalized Regression , 2010, Genetics.

[44]  Kimberly A. Smith,et al.  POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer , 2004, Genome Biology.

[45]  Eleazar Eskin,et al.  A sequence-based variation map of 8.27 million SNPs in inbred mouse strains , 2007, Nature.

[46]  N. Schork,et al.  Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. , 2008, American journal of human genetics.

[47]  M. Spence,et al.  Heart Rate and Blood Pressure Quantitative Trait Loci for the Airpuff Startle Reaction , 2002, Hypertension.

[48]  Matthias Heinig,et al.  New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach , 2010, PLoS Comput. Biol..

[49]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[50]  C. Priebe,et al.  A weighted generalization of the Mann-Whitney-Wilcoxon statistic , 2002 .

[51]  Martin Vingron,et al.  Predicting transcription factor affinities to DNA from a biophysical model , 2007, Bioinform..

[52]  Z. Zeng Precision mapping of quantitative trait loci. , 1994, Genetics.

[53]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of Molecular Biology.

[54]  Vladimir Svetnik,et al.  STATISTICAL ANALYSIS OF HIGH DENSITY OLIGONUCLEOTIDE ARRAYS: A SAFER APPROACH , 2001 .

[55]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[56]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[57]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[58]  Inanç Birol,et al.  The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. , 2010, Genome research.

[59]  D. Balding,et al.  Handbook of statistical genetics , 2004 .

[60]  A J Belanger,et al.  Epidemiology of heart failure. , 1991, American heart journal.

[61]  Jingyuan Fu,et al.  Genetical Genomics: Spotlight on QTL Hotspots , 2008, PLoS genetics.

[62]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[63]  P. Baker,et al.  SHHF/Mcc-cp Rat: Model of Obesity, Non-insulin-dependent Diabetes, and Congestive Heart Failure , 1990 .

[64]  Ulrich Mansmann,et al.  GlobalANCOVA: exploration and assessment of gene group effects , 2008, Bioinform..

[65]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[66]  Martin Vingron,et al.  PASTAA: identifying transcription factors associated with sets of co-regulated genes , 2008, Bioinform..

[67]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[68]  Serge Batalov,et al.  Genomewide Association Analysis in Diverse Inbred Mice: Power and Population Structure , 2007, Genetics.

[69]  T. Brody,et al.  On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines , 2004, Theoretical and Applied Genetics.

[70]  Hideo Negishi,et al.  IRF-7 is the master regulator of type-I interferon-dependent immune responses , 2005, Nature.

[71]  J. Zhu,et al.  An integrative genomics approach to the reconstruction of gene networks in segregating populations , 2004, Cytogenetic and Genome Research.

[72]  E. Petretto,et al.  Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease , 2005, Nature Genetics.

[73]  Claude Lenfant,et al.  Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[74]  E E Schadt,et al.  Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits , 2005, Nature Genetics.

[75]  Alan Salama,et al.  Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility , 2008, Nature Genetics.

[76]  M. Spence,et al.  Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. , 1995, The Journal of clinical investigation.

[77]  P. O’Reilly,et al.  Genome-wide association study identifies eight loci associated with blood pressure , 2009, Nature Genetics.

[78]  Francis S. Collins,et al.  Variations on a Theme: Cataloging Human DNA Sequence Variation , 1997, Science.

[79]  C. Coban,et al.  Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 , 2004, Nature Immunology.

[80]  P. Khatri,et al.  Global functional profiling of gene expression. , 2003, Genomics.

[81]  Edwin Cuppen,et al.  Progress and prospects in rat genetics: a community view , 2008, Nature Genetics.

[82]  Alexandre V. Morozov,et al.  Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE , 2006, ISMB.

[83]  Mrinal Kalakrishnan,et al.  An Integrative Network Approach to Map the Transcriptome to the Phenome , 2008, RECOMB.

[84]  Z. Zeng,et al.  Multiple interval mapping for quantitative trait loci. , 1999, Genetics.

[85]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[86]  David N Arnosti,et al.  Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? , 2005, Journal of cellular biochemistry.

[87]  L. Tsui,et al.  Erratum: Identification of the Cystic Fibrosis Gene: Genetic Analysis , 1989, Science.

[88]  J. Lamb,et al.  Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes , 2006, Journal of neurochemistry.

[89]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[90]  M. Leite,et al.  Nucleoplasmic Calcium Is Required for Cell Proliferation* , 2007, Journal of Biological Chemistry.

[91]  E. Segal,et al.  Predicting expression patterns from regulatory sequence in Drosophila segmentation , 2008, Nature.

[92]  Serge Batalov,et al.  Gene Set Enrichment in eQTL Data Identifies Novel Annotations and Pathway Regulators , 2008, PLoS genetics.

[93]  Yan D. Zhao Sample size estimation for the van Elteren test—a stratified Wilcoxon–Mann–Whitney test , 2006, Statistics in medicine.

[94]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Timothy L. Bailey,et al.  Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.

[96]  N. Samani,et al.  Successful isolation of a rat chromosome 1 blood pressure quantitative trait locus in reciprocal congenic strains. , 1998, Hypertension.

[97]  Korbinian Strimmer,et al.  BMC Bioinformatics BioMed Central Methodology article A general modular framework for gene set enrichment analysis , 2009 .

[98]  S. P. Fodor,et al.  Light-directed, spatially addressable parallel chemical synthesis. , 1991, Science.

[99]  P. Park,et al.  Discovering statistically significant pathways in expression profiling studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  R. Rao Insulin Resistance in Spontaneously Hypertensive Rats: Difference in Interpretation Based on Insulin Infusion Rate or on Plasma Insulin in Glucose Clamp Studies , 1993, Diabetes.

[101]  S. Horvath,et al.  Evidence for anti-Burkitt tumour globulins in Burkitt tumour patients and healthy individuals. , 1967, British Journal of Cancer.

[102]  E. Birney,et al.  SNP and haplotype mapping for genetic analysis in the rat , 2008, Nature Genetics.

[103]  P. Deloukas,et al.  Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner , 2009, Science.

[104]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[105]  J. Castle,et al.  An integrative genomics approach to infer causal associations between gene expression and disease , 2005, Nature Genetics.

[106]  Weller Ji Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. , 1986 .

[107]  J. Nap,et al.  Genetical genomics: the added value from segregation. , 2001, Trends in genetics : TIG.

[108]  N. Hübner,et al.  Congenic substitution mapping excludes Sa as a candidate gene locus for a blood pressure quantitative trait locus on rat chromosome 1. , 1999, Hypertension.

[109]  M. Mann,et al.  A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. , 2009, Genome research.

[110]  V. Roger,et al.  Trends in prevalence and outcome of heart failure with preserved ejection fraction. , 2006, The New England journal of medicine.

[111]  G. Peltz,et al.  Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma , 2000, Nature Immunology.

[112]  A. Hess,et al.  Fisher's combined p-value for detecting differentially expressed genes using Affymetrix expression arrays , 2007, BMC Genomics.

[113]  J. Flint,et al.  Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats , 1997, Nature Genetics.

[114]  R. Berne,et al.  Effect of Epinephrine and Norepinephrine on Coronary Circulation , 1958, Circulation research.

[115]  Alison Abbott,et al.  Return of the rat , 2009, Nature.

[116]  Dudley J Pennell,et al.  Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass , 2008, Nature Genetics.

[117]  K. Dolinski,et al.  Use and misuse of the gene ontology annotations , 2008, Nature Reviews Genetics.

[118]  V. Křen Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. , 1975, Acta Universitatis Carolinae. Medica. Monographia.

[119]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[120]  J. Pagano,et al.  Regulation of the Transcriptional Activity of the IRF7 Promoter by a Pathway Independent of Interferon Signaling* , 2005, Journal of Biological Chemistry.

[121]  Zhen Jiang,et al.  Bioconductor Project Bioconductor Project Working Papers Year Paper Extensions to Gene Set Enrichment , 2013 .

[122]  B. Efron SIMULTANEOUS INFERENCE : WHEN SHOULD HYPOTHESIS TESTING PROBLEMS BE COMBINED? , 2008, 0803.3863.

[123]  Anthony Ralston,et al.  Mathematical Methods for Digital Computers, Volume II. , 1968 .

[124]  Korbinian Strimmer,et al.  A unified approach to false discovery rate estimation , 2008, BMC Bioinformatics.

[125]  T. Kurtz,et al.  Quantitative trait loci influencing cholesterol and phospholipid phenotypes map to chromosomes that contain genes regulating blood pressure in the spontaneously hypertensive rat. , 1996, The Journal of clinical investigation.

[126]  M. Berger,et al.  Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors , 2009, Nature Protocols.

[127]  C. Ting,et al.  A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor , 2010, The Pharmacogenomics Journal.

[128]  S. Hunt,et al.  Genome-Wide Associations of Gene Expression Variation in Humans , 2005, PLoS genetics.

[129]  B. Falkner,et al.  Insulin resistance in the conscious spontaneously hypertensive rat: euglycemic hyperinsulinemic clamp study. , 1993, Metabolism: clinical and experimental.

[130]  M. Daly,et al.  Genetic Mapping in Human Disease , 2008, Science.

[131]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[132]  Rachel B. Brem,et al.  Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors , 2003, Nature Genetics.

[133]  H. Jacob,et al.  Use of AFLP markers for gene mapping and QTL detection in the rat. , 1996, Genomics.

[134]  M. Gerstein,et al.  Annotating non-coding regions of the genome , 2010, Nature Reviews Genetics.

[135]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[136]  Martin Vingron,et al.  Statistical Modeling of Transcription Factor Binding Affinities Predicts Regulatory Interactions , 2008, PLoS Comput. Biol..

[137]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[138]  K. Okamoto Spontaneous hypertension; its pathogenesis and complications , 1972 .

[139]  C. Mallows Some Comments on Cp , 2000, Technometrics.

[140]  Paul A Lyons,et al.  Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. , 2002, Genome research.

[141]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[142]  David J. Arenillas,et al.  In Silico Detection of Sequence Variations Modifying Transcriptional Regulation , 2007, PLoS Comput. Biol..

[143]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[144]  C. Mackay,et al.  Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. , 2009, Immunity.

[145]  J. Todd,et al.  Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes , 2009, Science.

[146]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[147]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[148]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[150]  Leonid Kruglyak,et al.  The road to genome-wide association studies , 2008, Nature Reviews Genetics.

[151]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[152]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[153]  E. Schiffrin,et al.  Inflammation in hypertension , 2006, Current opinion in nephrology and hypertension.

[154]  P. Rosenbaum Model-Based Direct Adjustment , 1987 .

[155]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[156]  Robert W. Williams,et al.  WebQTL - Web-based complex trait analysis , 2003, Neuroinformatics.

[157]  W. Hays Statistical theory. , 1968, Annual review of psychology.

[158]  S. Horvath,et al.  Variations in DNA elucidate molecular networks that cause disease , 2008, Nature.

[159]  José Crossa,et al.  Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree , 2009, Genetics.

[160]  D. Eizirik,et al.  The role of inflammation in insulitis and , 2009 .

[161]  J. Cyster,et al.  EBV induced molecule-2 mediates B cell segregation between outer and center follicle , 2009, Nature.

[162]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[163]  Rappold,et al.  Human Molecular Genetics , 1996, Nature Medicine.

[164]  L. Liang,et al.  Mapping complex disease traits with global gene expression , 2009, Nature Reviews Genetics.

[165]  David BotsteinS’B Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps , 2002 .

[166]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[167]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[168]  V. Ingram,et al.  A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anæmia Hæmoglobin , 1956, Nature.

[169]  Anirvan M. Sengupta,et al.  A biophysical approach to transcription factor binding site discovery. , 2003, Genome research.