Supramolecular Assembly of Halide Perovskite Building Blocks.

The structural diversity and tunable optoelectronic properties of halide perovskites originate from the rich chemistry of the metal halide ionic octahedron [MX6]n- (M = Pb2+, Sb3+, Te4+, Sn4+, Pt4+, etc.; X = Cl-, Br-, and I-). The properties of the extended perovskite solids are dictated by the assembly, connectivity, and interaction of these octahedra within the lattice environment. Hence, the ability to manipulate and control the assembly of the octahedral building blocks is paramount for constructing new perovskite materials. Here, we propose a systematic supramolecular strategy for the assembly of [MX6]n- octahedra into a solid extended network. Interaction of alkali metal-bound crown ethers with the [M(IV)X6]2- octahedron resulted in a structurally and optoelectronically tunable "dumbbell" structural unit in solution. Single crystals with diverse packing geometries and symmetries will form as the solid assembly of this new supramolecular building block. This supramolecular assembly route introduces a new general strategy for designing halide perovskite structures with potentially new optoelectronic properties.

[1]  Michael B. Ross,et al.  Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs2TeX6 (X = Cl–, Br–, I–) Single Crystals , 2021, The Journal of Physical Chemistry C.

[2]  P. Yang,et al.  Ligand-Free Processable Perovskite Semiconductor Ink. , 2021, Nano letters.

[3]  P. Yang,et al.  The making of a reconfigurable semiconductor with a soft ionic lattice , 2021, Matter.

[4]  Qingkun Kong,et al.  Controlling Photoluminescence and Photocatalysis Activities in Lead-Free Cs2PtxSn1-xCl6 Perovskites via Ion Substitution. , 2021, Angewandte Chemie.

[5]  L. Quan,et al.  A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION). , 2021, Nano letters (Print).

[6]  David T. Limmer,et al.  Kinetics of moisture-induced phase transformation in inorganic halide perovskite , 2021, Matter.

[7]  G. Murtaza,et al.  Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; and X = Cl, Br, I): a first principles study , 2021, Scientific Reports.

[8]  A. Nicholas,et al.  Impact of noncovalent interactions on structural and photophysical properties of zero-dimensional tellurium(iv) perovskites , 2021, Journal of Materials Chemistry C.

[9]  R. Gonnade,et al.  Lead-free zero dimensional tellurium(iv) chloride-organic hybrid with strong room temperature emission as a luminescent material , 2021, Journal of Materials Chemistry C.

[10]  M. Kovalenko,et al.  Hybrid 0D Antimony Halides as Air‐Stable Luminophores for High‐Spatial‐Resolution Remote Thermography , 2021, Advanced materials.

[11]  Z. Xia,et al.  Recent progress of zero-dimensional luminescent metal halides. , 2021, Chemical Society reviews.

[12]  Guangda Niu,et al.  Lead‐Free Perovskite Variant Solid Solutions Cs2Sn1–xTexCl6: Bright Luminescence and High Anti‐Water Stability , 2020, Advanced materials.

[13]  M. Kovalenko,et al.  Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides , 2020, ACS materials letters.

[14]  Jiang Tang,et al.  Lead‐Free Perovskite Derivative Cs2SnCl6−xBrx Single Crystals for Narrowband Photodetectors , 2019, Advanced Optical Materials.

[15]  A. Tsirlin,et al.  Cubic symmetry and magnetic frustration on the fcc spin lattice in K2IrCl6 , 2019, Physical Review B.

[16]  J. Neilson,et al.  Perspectives and Design Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors , 2019, Chemistry of Materials.

[17]  X. Tao,et al.  Tellurium-Based Double Perovskites A2TeX6 with Tunable Band Gap and Long Carrier Diffusion Length for Optoelectronic Applications , 2018, ACS Energy Letters.

[18]  A. Walsh,et al.  Giant Electron-Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite. , 2018, ACS nano.

[19]  S. García‐Granda,et al.  Crystal structure, Hirshfeld surfaces computational study and physicochemical characterization of the hybrid material (C7H10N)2[SnCl6]·H2O , 2018 .

[20]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[21]  Syed Ali Abbas,et al.  Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites , 2017 .

[22]  A. Valkonen,et al.  Structural characterization, spectroscopic, thermal, AC conductivity and dielectric properties and antimicrobial studies of (C8H12N)2[SnCl6] , 2017 .

[23]  Yuhai Zhang,et al.  Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals. , 2017, The journal of physical chemistry letters.

[24]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[25]  P. Carroll,et al.  The Hexachlorocerate(III) Anion: A Potent, Benchtop Stable, and Readily Available Ultraviolet A Photosensitizer for Aryl Chlorides. , 2016, Journal of the American Chemical Society.

[26]  J. Even,et al.  Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors. , 2016, The journal of physical chemistry letters.

[27]  C. Feldmann,et al.  MnBr₂/18-crown-6 coordination complexes showing high room temperature luminescence and quantum yield. , 2016, Dalton transactions.

[28]  K. Asai,et al.  Comparative study of scintillation properties of Cs2HfCl6 and Cs2ZrCl6 , 2016 .

[29]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[30]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[31]  A. Mirochnik,et al.  Structure and luminescence properties of antimony(III) complex compounds , 2008 .

[32]  L. Cronin,et al.  Directing organic-inorganic hybrid molecular-assemblies of polyoxometalate crown-ether complexes with supramolecular cations , 2007 .

[33]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[34]  R. Rogers,et al.  The crystal structure of a heterobimetallic crown ether complex: [Na(dibenzo-18-crown-6)][FeCl4] , 1995 .

[35]  Hans Nikol,et al.  The Structures of s2 Metal Complexes in the Ground and sp Excited States , 1993 .

[36]  K. Hesse,et al.  Magnetic field effect on the luminescence of octahedral hexachloroselenate(IV). Evidence for the vibronic nature of the low-temperature emission , 1991 .

[37]  Charles J. Pedersen,et al.  Die Entdeckung der Kronenether (Nobel‐Vortrag) , 1988 .

[38]  D. Cram,et al.  The design of molecular hosts, guests, and their complexes , 1988, Science.

[39]  Harry P. Hopkins,et al.  Conductance and infrared studies on acetonitrile solutions containing crown ethers and alkali metal salts , 1980 .

[40]  P. Machmer On the Correlation of 35Cl Nuclear Quadrupole Coupling Constants with π→γ3 and π→γ5 Optical Electron Transfer Bands of Transition Metal Complexes and its Significance in Pi-Bonding , 1969 .

[41]  T. Kaatz,et al.  The crystal structure of the compound Cs2CeCl6 , 1966 .