A Semi-Implicit Compressible Model for Atmospheric Flows with Seamless Access to Soundproof and Hydrostatic Dynamics

AbstractWhen written in conservation form for mass, momentum, and density-weighted potential temperature, and with Exner pressure in the momentum equation, the pseudoincompressible model and the hy...

[1]  Terry Davies,et al.  Validity of anelastic and other equation sets as inferred from normal‐mode analysis , 2003 .

[2]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[3]  Marvin A. Carlson Editor , 2015 .

[4]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[5]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[6]  Francis X. Giraldo,et al.  Current and Emerging Time-Integration Strategies in Global Numerical Weather and Climate Prediction , 2019 .

[7]  M. J. P. Cullen,et al.  Modelling atmospheric flows , 2007, Acta Numerica.

[8]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[9]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[10]  T. Benacchio,et al.  A blended semi-implicit numerical model for weakly compressible atmospheric dynamics , 2014 .

[11]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[12]  Stefan Vater,et al.  Stability of a Cartesian grid projection method for zero Froude number shallow water flows , 2009, Numerische Mathematik.

[13]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[14]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[15]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[16]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .

[17]  Rupert Klein,et al.  A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics , 2014 .

[18]  Rupert Klein,et al.  A Doubly Blended Model for Multiscale Atmospheric Dynamics , 2016 .

[19]  Francis P. Bretherton,et al.  Atmospheric Frontogenesis Models: Mathematical Formulation and Solution , 1972 .

[20]  Louis J. Wicker,et al.  Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .

[21]  J. Dukowicz Evaluation of Various Approximations in Atmosphere and Ocean Modeling Based on an Exact Treatment of Gravity Wave Dispersion , 2013 .

[22]  R. Klein Scale-Dependent Asymptotic Models for Atmospheric Flows , 2010 .

[23]  M. Cullen,et al.  The Fully Compressible Semi-Geostrophic System from Meteorology , 2003 .

[24]  Colin J. Cotter,et al.  A mixed finite‐element, finite‐volume, semi‐implicit discretization for atmospheric dynamics: Cartesian geometry , 2019, Quarterly Journal of the Royal Meteorological Society.

[25]  Guillaume Houzeaux,et al.  A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin , 2015 .

[26]  Mariano Hortal,et al.  The development and testing of a new two‐time‐level semi‐Lagrangian scheme (SETTLS) in the ECMWF forecast model , 2002 .

[27]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[28]  Rupert Klein,et al.  Scale-Dependent Models for Atmospheric Flows , 2010 .

[29]  Bram van Leer,et al.  Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to Residual-Distribution Schemes , 2003 .

[30]  Piotr K. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids , 1991 .

[31]  D. Durran Improving the Anelastic Approximation , 1989 .

[32]  N. Wedi,et al.  Perturbation equations for all-scale atmospheric dynamics , 2018 .

[33]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[34]  R. Klein,et al.  Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .

[35]  P. Smolarkiewicz,et al.  Conservative integrals of adiabatic Durran's equations , 2008 .

[36]  George H. Bryan,et al.  A Benchmark Simulation for Moist Nonhydrostatic Numerical Models , 2002 .

[37]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[38]  P. R. Bannon On the anelastic approximation for a compressible atmosphere , 1996 .

[39]  A. S. Almgren,et al.  Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .

[40]  Rupert Klein,et al.  Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .

[41]  T. Sonar,et al.  Asymptotic adaptive methods for multi-scale problems in fluid mechanics , 2001 .

[42]  Michael Baldauf,et al.  An analytic solution for linear gravity waves in a channel as a test for numerical models using the non‐hydrostatic, compressible Euler equations , 2013 .

[43]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[44]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[45]  N. Wood,et al.  Semi-implicit semi-Lagrangian modelling of the atmosphere: a Met Office perspective , 2016 .

[46]  Hilary Weller,et al.  Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves , 2014 .

[47]  Joanna Szmelter,et al.  FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS , 2019, Geoscientific Model Development.

[48]  A. Arakawa,et al.  Unification of the Anelastic and Quasi-Hydrostatic Systems of Equations , 2009 .

[49]  Michael L. Minion,et al.  A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics , 2008, J. Comput. Phys..

[50]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[51]  Nigel Wood,et al.  An inherently mass‐conserving iterative semi‐implicit semi‐Lagrangian discretization of the non‐hydrostatic vertical‐slice equations , 2010 .

[52]  D. Balsara,et al.  A divergence‐free semi‐implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics , 2018, International journal for numerical methods in fluids.

[53]  Joanna Szmelter,et al.  FVM 1.0: A nonhydrostatic finite-volume dynamical core formulation for IFS , 2018 .

[54]  Pierre Bénard,et al.  Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system , 1995 .

[55]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[56]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[57]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[58]  R. Klein Asymptotics, structure, and integration of sound-proof atmospheric flow equations , 2009 .

[59]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[60]  Omar M. Knio,et al.  Regime of Validity of Soundproof Atmospheric Flow Models , 2010 .

[61]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .