Speculations Concerning the First Ultraintelligent Machine

Publisher Summary An ultra-intelligent machine is a machine that can far surpass all the intellectual activities of any man however clever. The design of machines is one of these intellectual activities; therefore, an ultra-intelligent machine could design even better machines. To design an ultra-intelligent machine one needs to understand more about the human brain or human thought or both. The physical representation of both meaning and recall, in the human brain, can be to some extent understood in terms of a subassembly theory, this being a modification of Hebb's cell assembly theory. The subassembly theory sheds light on the physical embodiment of memory and meaning, and there can be little doubt that both needs embodiment in an ultra-intelligent machine. The subassembly theory leads to reasonable and interesting explanations of a variety of psychological effects.

[1]  I. Good A CAUSAL CALCULUS (I)* , 1961, The British Journal for the Philosophy of Science.

[2]  Gordon Pask,et al.  A Discussion of Artificial Intelligence and Self-Organization , 1964, Adv. Comput..

[3]  S. Cobb Speech and Brain-Mechanisms. , 1960 .

[4]  Marvin Minsky,et al.  A Selected Descriptor-Indexed Bibliography to the Literature on Artificial Intelligence , 1961 .

[5]  H. Kalmus,et al.  Analogies of Language to Life , 1962 .

[6]  P M MILNER,et al.  The cell assembly: Mark II. , 1957, Psychological review.

[7]  George S. Sebestyen,et al.  Decision-making processes in pattern recognition , 1962 .

[8]  James B. Alexander Physiology of nerves and nerve cells. , .

[9]  I J Good,et al.  Kinds of Probability: Although there are at least five kinds of probability, we can get along with just one kind. , 1959, Science.

[10]  Noam Chomsky,et al.  Explanatory Models in Linguistics , 1966 .

[11]  Peter H. Greene,et al.  An approach to computers that perceive, learn, and reason , 1959, IRE-AIEE-ACM '59 (Western).

[12]  I. Good THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .

[13]  Irving John Good,et al.  Cascade theory and the molecular weight averages of the sol fraction , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[15]  Juris Hartmanis,et al.  The Applications of Some Basic Inequalities for Entropy , 1959, Inf. Control..

[16]  Arthur L. Samuel,et al.  Programming Computers to Play Games , 1960, Adv. Comput..

[17]  S. Kaplan The Physiology of Thought , 1950 .

[18]  E D Adrian,et al.  The interpretation of potential waves in the cortex , 1934, The Journal of physiology.

[19]  R. O. Winder,et al.  THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE , 1962 .

[20]  P. H. A. Sneath,et al.  Recent Developments in Theoretical and Quantitative Taxonomy , 1961 .

[21]  Max Black,et al.  Language and Philosophy. , 1950 .

[22]  Irving John Good,et al.  Some Terminology and Notation in Information Theory , 1956 .

[23]  C. B. Tompkins METHODS OF SUCCESSIVE RESTRICTIONS IN COMPUTATIONAL PROBLEMS INVOLVING DISCRETE VARIABLES , 1962 .

[24]  Jacob Wolfowitz Coding Theorems of Information Theory , 1962 .

[25]  I. J. Good,et al.  Effective Sampling Rates for Signal Detection; or Can the Gaussian Model be Salvaged? , 1960, Inf. Control..

[26]  P. Fatt,et al.  PHYSIOLOGY OF NERVE CELLS , 1957 .

[27]  M. Kneale,et al.  The Sensory Order , 1954 .

[28]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[29]  D. Middleton,et al.  Detection and Extraction of Signals in Noise from the Point of View of Statistical Decision Theory. I , 1955 .

[30]  H. Edmund Stiles,et al.  The Association Factor in Information Retrieval , 1961, JACM.

[31]  Kenneth R. Shoulders,et al.  Microelectronics Using Electron-Beam-Activated Machining Techniques , 1961, Adv. Comput..

[32]  F. Gall,et al.  Anatomie et physiologie du système nerveux en général et du cerveau en particulier; avec des observations sur la possibilité de reconnaître plusieurs dispositions intellectuelles et morales de l’homme et des animaux par la configuration de leur têtes (Vol. 3) , 1810 .

[33]  D. Sholl The organization of the cerebral cortex , 1957 .

[34]  Dennis Gabor,et al.  Non-linear filter, predictor and simulator , 1961 .

[35]  A. M. Uttley,et al.  The Design of Conditional Probability Computers , 1959, Inf. Control..

[36]  Roger M. Needham,et al.  A Method for Using Computers in Information Classification , 1962, IFIP Congress.

[37]  H. E. Petersen,et al.  A Magnetic Associative Memory , 1961, IBM J. Res. Dev..

[38]  Philip M. Lewis,et al.  Approximating Probability Distributions to Reduce Storage Requirements , 1959, Information and Control.

[39]  G. A. Miller,et al.  Verbal context and the recall of meaningful material. , 1950, The American journal of psychology.

[40]  H. E. Petersen,et al.  A magnetic associative memory system , 1961 .

[41]  John R. Pierce,et al.  Symbols, Signals, and Noise: The Nature and Process of Communication. , 1961 .

[42]  I. Good How Rational Should a Manager be , 1962 .

[43]  J. F. Dashiell,et al.  Theories of perception and the concept of structure. , 1955 .

[44]  Kenneth L. Artis Design for a Brain , 1961 .

[45]  C. Cherry,et al.  On human communication , 1966 .

[46]  George A. Miller,et al.  Human memory and the storage of information , 1956, IRE Trans. Inf. Theory.

[47]  Floyd H. Allport,et al.  Theories of Perception and the Concept of Structure: A Review and Critical Analysis with an Introduction to a Dynamic-Structural Theory of Behavior. , 1955 .

[48]  J. Bruner,et al.  Expectation and the perception of color. , 1951, The American journal of psychology.

[49]  D. Mackay The Epistemological Problem for Automata , 1956 .

[50]  I. Good Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables , 1963 .

[51]  D. B. Tower,et al.  Structural and functional organization of mammalian cerebral cortex: The correlation of neurone density with brain size. Cortical neurone density in the fin whale (Balaenoptera Physalus L.) with a note on the cortical neurone density in the Indian elephant , 1954, The Journal of comparative neurology.

[52]  W. Walter The Living Brain , 1963 .

[53]  Richard M. Friedberg,et al.  A Learning Machine: Part I , 1958, IBM J. Res. Dev..

[54]  R. Solomon,et al.  Word frequency, personal values, and visual duration thresholds. , 1951, Psychological review.

[55]  P. Halmos Naive Set Theory , 1961 .

[56]  D. W. Davies,et al.  Mechanization of thought Processes , 1959, Nature.

[57]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[58]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[59]  Amiel Feinstein,et al.  Transmission of Information. , 1962 .

[60]  L. Stein,et al.  Probability and the Weighing of Evidence , 1950 .

[61]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[62]  C. Carter,et al.  Problems of Economic Growth , 1963, Nature.

[63]  M. Tribus Information Theory as the Basis for Thermostatics and Thermodynamics , 1961 .

[64]  I. J. Good,et al.  How Much Science Can You Have at Your Fingertips? , 1958, IBM J. Res. Dev..

[65]  C. Stephen Dessain Review of Book , 1947 .

[66]  D. R. Smith,et al.  Maintained Activity in Neural Nets , 1962, JACM.

[67]  D. Mackay,et al.  Consciousness and Behavior , 1952 .

[68]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[69]  J. Neyman,et al.  Statistical Approach to Problems of Cosmology , 1958 .

[70]  Irving John Good,et al.  The Interaction Algorithm and Practical Fourier Analysis , 1958 .

[71]  I. Good,et al.  Distribution of Word Frequencies , 1957, Nature.

[72]  I. Good On the Estimation of Small Frequencies in Contingency Tables , 1956 .

[73]  P. M. Woodward,et al.  XCII. A theory of radar information , 1950 .

[74]  P. Flory Principles of polymer chemistry , 1953 .