Dynamics of fluctuations in quantum simple exclusion processes

We consider the dynamics of fluctuations in the quantum asymmetric simple exclusion process (Q-ASEP) with periodic boundary conditions. The Q-ASEP describes a chain of spinless fermions with random hoppings that are induced by a Markovian environment. We show that fluctuations of the fermionic degrees of freedom obey evolution equations of Lindblad type, and derive the corresponding Lindbladians. We identify the underlying algebraic structure by mapping them to non-Hermitian spin chains and demonstrate that the operator space fragments into exponentially many (in system size) sectors that are invariant under time evolution. At the level of quadratic fluctuations we consider the Lindbladian on the sectors that determine the late time dynamics for the particular case of the quantum symmetric simple exclusion process (Q-SSEP). We show that the corresponding blocks in some cases correspond to known Yang-Baxter integrable models and investigate the level-spacing statistics in others. We carry out a detailed analysis of the steady states and slow modes that govern the late time behaviour and show that the dynamics of fluctuations of observables is described in terms of closed sets of coupled linear differential-difference equations. The behaviour of the solutions to these equations is essentially diffusive but with relevant deviations, that at sufficiently late times and large distances can be described in terms of a continuum scaling limit which we construct. We numerically check the validity of this scaling limit over a significant range of time and space scales. These results are then applied to the study of operator spreading at large scales, focusing on out-of-time ordered correlators and operator entanglement.

[1]  D. Simon,et al.  Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models , 2011, 1106.4712.

[2]  D. Bernard,et al.  Solution to the Quantum Symmetric Simple Exclusion Process: The Continuous Case , 2020, Communications in Mathematical Physics.

[3]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[4]  Stefano Olla,et al.  Hydrodynamics and large deviation for simple exclusion processes , 1989 .

[5]  Kirone Mallick,et al.  Some exact results for the exclusion process , 2011, 1101.2849.

[6]  M. Znidaric Entanglement growth in diffusive systems , 2019, 1912.03645.

[7]  K. Mallick,et al.  An exact formula for the statistics of the current in the TASEP with open boundaries , 2011, 1104.5089.

[8]  F. Essler,et al.  Large deviation function for the current in the open asymmetric simple exclusion process. , 2011, Physical review letters.

[9]  H. Spohn,et al.  Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. , 1992, Physical review letters.

[10]  Tomaz Prosen,et al.  Operator space entanglement entropy in a transverse Ising chain , 2007, 0706.2480.

[11]  L Bertini,et al.  Current fluctuations in stochastic lattice gases. , 2005, Physical review letters.

[13]  Tomaz Prosen,et al.  Complexity of thermal states in quantum spin chains , 2008, 0805.4149.

[14]  D. Bernard,et al.  Transport in quantum chains under strong monitoring , 2018, 1802.05048.

[15]  David J. Luitz,et al.  Operator entanglement entropy of the time evolution operator in chaotic systems , 2016, 1612.07327.

[16]  N. Andrei,et al.  Heisenberg chain with impurities (an integrable model) , 1984 .

[17]  T. Prosen,et al.  Integrable Quantum Dynamics of Open Collective Spin Models. , 2018, Physical review letters.

[18]  S. Ramaswamy,et al.  Universal power law in crossover from integrability to quantum chaos , 2013, 1309.1865.

[19]  M. Fleischhauer,et al.  Dynamical simulation of integrable and nonintegrable models in the Heisenberg picture. , 2010, Physical review letters.

[20]  V. Alba,et al.  Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain. , 2019, Physical review letters.

[21]  Masahito Ueda,et al.  Exact Liouvillian Spectrum of a One-Dimensional Dissipative Hubbard Model. , 2020, Physical review letters.

[22]  D. Bernard,et al.  From Stochastic Spin Chains to Quantum Kardar-Parisi-Zhang Dynamics. , 2020, Physical review letters.

[23]  F. Essler,et al.  Integrability of $1D$ Lindbladians from operator-space fragmentation , 2020, 2009.11745.

[24]  B. Pozsgay,et al.  Weak integrability breaking and level spacing distribution , 2021, SciPost Physics.

[25]  Spohn,et al.  Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[27]  Rajarshi Pal,et al.  Entangling power of time-evolution operators in integrable and nonintegrable many-body systems , 2018, Physical Review B.

[28]  M. Schemmer,et al.  Long-lived nonthermal states realized by atom losses in one-dimensional quasicondensates , 2017, 1703.00322.

[29]  V. Alba Diffusion and operator entanglement spreading , 2020, Physical Review B.

[30]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[31]  V. Alba,et al.  Spreading of correlations in Markovian open quantum systems , 2020, Physical Review B.

[32]  R. A. Blythe,et al.  Nonequilibrium steady states of matrix-product form: a solver's guide , 2007, 0706.1678.

[33]  A. Larkin,et al.  Quasiclassical Method in the Theory of Superconductivity , 1969 .

[34]  J. Kurchan,et al.  Duality in quantum transport models , 2020, 2008.03476.

[35]  B. Sutherland Model for a multicomponent quantum system , 1975 .

[36]  Chiara Paletta,et al.  Constructing Integrable Lindblad Superoperators. , 2021, Physical review letters.

[37]  Denis Bernard,et al.  Can the macroscopic fluctuation theory be quantized? , 2021, Journal of Physics A: Mathematical and Theoretical.

[38]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[39]  E. Bogomolny,et al.  Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.

[40]  Tomaz Prosen,et al.  Is the efficiency of classical simulations of quantum dynamics related to integrability? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  M. Nozaki,et al.  C Late-time behavior of TOMI for holographic CFTs 61 1 Introduction 1 . 1 Backgrounds and motivations , 2018 .

[42]  D. Jaksch,et al.  Dissipative Bethe Ansatz: Exact Solutions of Quantum Many-Body Dynamics Under Loss , 2020, 2004.05955.

[43]  J. Chalker,et al.  Solution of a Minimal Model for Many-Body Quantum Chaos , 2017, Physical Review X.

[44]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[45]  A. Lamacraft,et al.  Noisy coupled qubits: Operator spreading and the Fredrickson-Andersen model , 2018, Physical Review B.

[46]  F. Essler,et al.  Exact solution of a quantum asymmetric exclusion process with particle creation and annihilation , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[47]  Tomaz Prosen,et al.  Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.

[48]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  M. Plenio,et al.  Density matrix renormalization group in the Heisenberg picture. , 2008, Physical review letters.

[50]  Kim Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Catriona Dutreuilh,et al.  Introduction , 2019 .

[52]  D.Bernard,et al.  Equilibrium fluctuations in maximally noisy extended quantum systems , 2018, SciPost Physics.

[53]  D. Bernard,et al.  Open Quantum Symmetric Simple Exclusion Process. , 2019, Physical review letters.

[54]  Stefan Grosskinsky Warwick,et al.  Interacting particle systems , 2009 .

[55]  E. Vernier,et al.  Mixing times and cutoffs in open quadratic fermionic systems , 2020, SciPost Physics.

[56]  Jean Bellissard,et al.  Poisson vs. GOE Statistics in Integrable and Non-Integrable Quantum Hamiltonians , 1993, cond-mat/9301005.

[57]  C. Landim,et al.  Macroscopic fluctuation theory , 2014, 1404.6466.

[58]  M. Znidaric,et al.  Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System. , 2016, Physical review letters.

[59]  J. Dubail Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1  +  1d , 2016, 1612.08630.

[60]  D. Huse,et al.  Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems , 2018, Physical Review B.

[61]  Lee,et al.  Integrable spin-1 Heisenberg chain with impurity. , 1988, Physical review. B, Condensed matter.

[62]  N. Reshetikhin Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry , 1985 .

[63]  Herbert Spohn Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains , 2014 .

[64]  H. Vega,et al.  New integrable quantum chains combining different kinds of spins , 1992 .

[65]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[66]  Tomohiro Sasamoto,et al.  One-dimensional partially asymmetric simple exclusion process with open boundaries: Orthogonal polynomials approach , 1999 .

[67]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[68]  E. Domany,et al.  Phase transitions in an exactly soluble one-dimensional exclusion process , 1993, cond-mat/9303038.

[69]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[70]  B. Derrida AN EXACTLY SOLUBLE NON-EQUILIBRIUM SYSTEM : THE ASYMMETRIC SIMPLE EXCLUSION PROCESS , 1998 .

[71]  T. Takayanagi Holographic spacetimes as quantum circuits of path-integrations , 2018, Journal of High Energy Physics.

[72]  S. Gopalakrishnan Operator growth and eigenstate entanglement in an interacting integrable Floquet system , 2018, Physical Review B.

[73]  D. Bernard,et al.  Hydrodynamic Diffusion in Integrable Systems. , 2018, Physical review letters.

[74]  P. Z. I. F. S. I. Foundation,et al.  Entanglement of Quantum Evolutions , 2000, quant-ph/0010074.

[75]  Omar Fawzi,et al.  Decoupling with Random Quantum Circuits , 2013, Communications in Mathematical Physics.

[76]  J. Ignacio Cirac,et al.  Noise-driven dynamics and phase transitions in fermionic systems , 2012, 1207.1653.

[77]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[78]  Brian Skinner,et al.  Measurement-Induced Phase Transitions in the Dynamics of Entanglement , 2018, Physical Review X.

[79]  M. Rigol,et al.  Thermalization near Integrability in a Dipolar Quantum Newton's Cradle , 2017, 1707.07031.

[80]  O. Zilberberg,et al.  Entanglement spectrum of mixed states , 2018, Physical Review A.

[81]  M. Bauer,et al.  Stochastic dissipative quantum spin chains (I) : Quantum fluctuating discrete hydrodynamics , 2017, 1706.03984.

[82]  Tomaz Prosen,et al.  Operator space entanglement entropy in XY spin chains , 2009, 0903.2432.

[83]  H. Katsura,et al.  Dissipative spin chain as a non-Hermitian Kitaev ladder , 2018, Physical Review B.

[84]  H. Katsura,et al.  Dissipative quantum Ising chain as a non-Hermitian Ashkin-Teller model , 2019, Physical Review B.

[85]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[86]  G. Schütz 1 – Exactly Solvable Models for Many-Body Systems Far from Equilibrium , 2001 .

[87]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[88]  G. Mil’shtein,et al.  Interaction of Markov Processes , 1972 .

[89]  M. Znidaric Spin transport in a one-dimensional anisotropic Heisenberg model. , 2011, Physical review letters.

[90]  Shenglong Xu,et al.  Accessing scrambling using matrix product operators , 2018, Nature Physics.

[91]  D. Huse,et al.  Coarse-grained dynamics of operator and state entanglement , 2018, 1803.00089.

[92]  M. Znidaric Transport in a one-dimensional isotropic Heisenberg model at high temperature , 2011, 1112.2551.

[93]  Dong-Ling Deng,et al.  Solving the Liouvillian Gap with Artificial Neural Networks. , 2021, Physical review letters.

[94]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[95]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[96]  D. Huse,et al.  Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical, and classical chaos , 2018, Physical Review B.

[97]  T. Prosen,et al.  Exact Bethe Ansatz Spectrum of a Tight-Binding Chain with Dephasing Noise. , 2016, Physical review letters.