Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding.

The total synthesis of [Ψ[C(═S)NH]Tpg(4)]vancomycin aglycon (8) and its unique AgOAc-promoted single-step conversion to [Ψ[C(═NH)NH]Tpg(4)]vancomycin aglycon (7), conducted on a fully deprotected substrate, are disclosed. The synthetic approach not only permits access to 7, but it also allows late-stage access to related residue 4 derivatives, alternative access to [Ψ[CH(2)NH]Tpg(4)]vancomycin aglycon (6) from a common late-stage intermediate, and provides authentic residue 4 thioamide and amidine derivatives of the vancomycin aglycon that will facilitate ongoing efforts on their semisynthetic preparation. In addition to early stage residue 4 thioamide introduction, allowing differentiation of one of seven amide bonds central to the vancomycin core structure, the approach relied on two aromatic nucleophilic substitution reactions for formation of the 16-membered diaryl ethers in the CD/DE ring systems, an effective macrolactamization for closure of the 12-membered biaryl AB ring system, and the defined order of CD, AB, and DE ring closures. This order of ring closures follows their increasing ease of thermal atropisomer equilibration, permitting the recycling of any newly generated unnatural atropisomer under progressively milder thermal conditions where the atropoisomer stereochemistry already set is not impacted. Full details of the evaluation of 7 and 8 along with several related key synthetic compounds containing the core residue 4 amidine and thioamide modifications are reported. The binding affinity of compounds containing the residue 4 amidine with the model D-Ala-D-Ala ligand 2 was found to be only 2-3 times less than the vancomycin aglycon (5), and this binding affinity is maintained with the model d-Ala-d-Lac ligand 4, representing a nearly 600-fold increase in affinity relative to the vancomycin aglycon. Importantly, the amidines display effective dual, balanced binding affinity for both ligands (K(a)2/4 = 0.9-1.05), and they exhibit potent antimicrobial activity against VanA resistant bacteria ( E. faecalis , VanA VRE) at a level accurately reflecting these binding characteristics (MIC = 0.3-0.6 μg/mL), charting a rational approach forward in the development of antibiotics for the treatment of vancomycin-resistant bacterial infections. In sharp contrast, 8 and related residue 4 thioamides failed to bind either 2 or 4 to any appreciable extent, do not exhibit antimicrobial activity, and serve to further underscore the remarkable behavior of the residue 4 amidines.

[1]  D. Boger,et al.  Synthesis and stereochemical determination of complestatin A and B (neuroprotectin A and B). , 2011, Journal of the American Chemical Society.

[2]  D. Boger,et al.  A redesigned vancomycin engineered for dual D-Ala-D-ala And D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. , 2011, Journal of the American Chemical Society.

[3]  Aaron F. Baldwin,et al.  General and scalable amide bond formation with epimerization-prone substrates using T3P and pyridine. , 2011, Organic letters.

[4]  N. Fujii,et al.  Design and synthesis of amidine-type peptide bond isosteres: application of nitrile oxide derivatives as active ester equivalents in peptide and peptidomimetics synthesis. , 2011, Organic & biomolecular chemistry.

[5]  M. Matsuoka,et al.  Potent CXCR4 antagonists containing amidine type Peptide bond isosteres. , 2011, ACS medicinal chemistry letters.

[6]  E. Carreira,et al.  Probing the biology of natural products: molecular editing by diverted total synthesis. , 2010, Angewandte Chemie.

[7]  D. Boger,et al.  Synthesis and evaluation of selected key methyl ether derivatives of vancomycin aglycon. , 2010, Journal of medicinal chemistry.

[8]  D. Boger,et al.  Total synthesis of complestatin: development of a Pd(0)-mediated indole annulation for macrocyclization. , 2010, Journal of the American Chemical Society.

[9]  D. Hughes,et al.  A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. , 2010, Nature chemical biology.

[10]  D. Boger,et al.  Total synthesis of chloropeptin II (complestatin) and chloropeptin I. , 2009, Journal of the American Chemical Society.

[11]  W. L. Jorgensen,et al.  Vancomycin analogs: Seeking improved binding of d-Ala-d-Ala and d-Ala-d-Lac peptides by side-chain and backbone modifications. , 2009, Bioorganic & medicinal chemistry.

[12]  M. Fischbach,et al.  New ways to squash superbugs. , 2009, Scientific American.

[13]  D. Boger,et al.  Synthesis and evaluation of vancomycin aglycon analogues that bear modifications in the N-terminal D-leucyl amino acid. , 2009, Journal of medicinal chemistry.

[14]  Julian Tirado-Rives,et al.  Vancomycin resistance: modeling backbone variants with D-Ala-D-Ala and D-Ala-D-Lac peptides. , 2009, Bioorganic & medicinal chemistry letters.

[15]  K. Aoki,et al.  Crystal structures of the complexes between vancomycin and cell-wall precursor analogs. , 2009, Journal of molecular biology.

[16]  Roberta B Carey,et al.  Invasive methicillin-resistant Staphylococcus aureus infections in the United States. , 2007, JAMA.

[17]  Dongwoo Shin,et al.  Alanine scan of [L-Dap(2)]ramoplanin A2 aglycon: assessment of the importance of each residue. , 2007, Journal of the American Chemical Society.

[18]  Stefan Weigand,et al.  Antibacterial natural products in medicinal chemistry--exodus or revival? , 2006, Angewandte Chemie.

[19]  D. Boger,et al.  Total synthesis and evaluation of [Psi[CH2NH]Tpg4]vancomycin aglycon: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. , 2006, Journal of the American Chemical Society.

[20]  J. N. Moorthy,et al.  Facile and highly selective conversion of nitriles to amides via indirect acid-catalyzed hydration using TFA or AcOH-H2SO4. , 2005, The Journal of organic chemistry.

[21]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[22]  D. Boger,et al.  Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. , 2005, Chemical reviews.

[23]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[24]  D. Boger,et al.  Total synthesis and structure of the ramoplanin A1 and A3 aglycons: two minor components of the ramoplanin complex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. Kojić-Prodić,et al.  Analysis of the less common hydrogen bonds involving ester oxygen sp3 atoms as acceptors in the crystal structures of small organic molecules. , 2004, Acta crystallographica. Section B, Structural science.

[26]  M. Maccoss,et al.  Amidines as amide bond replacements in VLA-4 antagonists. , 2004, Bioorganic & medicinal chemistry letters.

[27]  D. Boger,et al.  Total synthesis of the ristocetin aglycon. , 2004, Journal of the American Chemical Society.

[28]  Nohad Gresh,et al.  Conformation‐dependent intermolecular interaction energies of the triphosphate anion with divalent metal cations. Application to the ATP‐binding site of a binuclear bacterial enzyme. A parallel quantum chemical and polarizable molecular mechanics investigation , 2004, J. Comput. Chem..

[29]  D. Boger,et al.  Synthesis and evaluation of methyl ether derivatives of the vancomycin, teicoplanin, and ristocetin aglycon methyl esters. , 2003, Bioorganic & medicinal chemistry letters.

[30]  Dale L Boger,et al.  Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. , 2003, Journal of the American Chemical Society.

[31]  Christopher T Walsh,et al.  Vancomycin assembly: nature's way. , 2003, Angewandte Chemie.

[32]  D. Boger,et al.  Synthesis and evaluation of vancomycin and vancomycin aglycon analogues that bear modifications in the residue 3 asparagine. , 2002, Bioorganic & medicinal chemistry letters.

[33]  Richard J. Lee,et al.  Total synthesis of the ramoplanin A2 and ramoplanose aglycon. , 2002, Journal of the American Chemical Society.

[34]  R. Süssmuth Vancomycin Resistance: Small Molecule Approaches Targeting the Bacterial Cell Wall Biosynthesis , 2002, Chembiochem : a European journal of chemical biology.

[35]  D. Boger Vancomycin, teicoplanin, and ramoplanin: Synthetic and mechanistic studies † , 2001, Medicinal research reviews.

[36]  D. Boger,et al.  First and second generation total synthesis of the teicoplanin aglycon. , 2001, Journal of the American Chemical Society.

[37]  D. Boger,et al.  Thermal Atropisomerism of Teicoplanin Aglycon Derivatives: Preparation of the P,P,P and M,P,P Atropisomers of the Teicoplanin Aglycon via Selective Equilibration of the DE Ring System , 2000 .

[38]  D. Boger,et al.  Total Synthesis of the Teicoplanin Aglycon , 2000 .

[39]  C. Walsh,et al.  Vancomycin resistance in enterococci: reprogramming of the D-ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. , 2000, Chemistry & biology.

[40]  D. Boger,et al.  Total Synthesis of the Vancomycin Aglycon , 1999 .

[41]  C. Walsh,et al.  VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. Nicolaou,et al.  Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. , 1999, Angewandte Chemie.

[43]  R. S. Coleman,et al.  Chemoselective Cleavage of Benzyl Ethers, Esters, and Carbamates in the Presence of Other Easily Reducible Groups , 1999 .

[44]  C. Fan,et al.  3-(Diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT): a new coupling reagent with remarkable resistance to racemization. , 1999, Organic letters.

[45]  Dudley H. Williams,et al.  The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. , 1999, Angewandte Chemie.

[46]  D. Boger,et al.  Diastereoselective Total Synthesis of the Vancomycin Aglycon with Ordered Atropisomer Equilibrations , 1999 .

[47]  R. Hughes,et al.  Total Synthesis of Vancomycin , 1999 .

[48]  D. Boger,et al.  Vancomycin CD and DE Macrocyclization and Atropisomerism Studies. , 1999, The Journal of organic chemistry.

[49]  R. Hughes,et al.  Total Synthesis of Vancomycin Aglycon-Part 2: Synthesis of Amino Acids 1-3 and Construction of the AB-COD-DOE Ring Skeleton. , 1998, Angewandte Chemie.

[50]  K. Nicolaou,et al.  Total Synthesis of Vancomycin Aglycon-Part 3: Final Stages. , 1998, Angewandte Chemie.

[51]  J. Barrow,et al.  Total Syntheses of Vancomycin and Eremomycin Aglycons. , 1998, Angewandte Chemie.

[52]  T. I. Richardson,et al.  Nonconventional Stereochemical Issues in the Design of the Synthesis of the Vancomycin Antibiotics: Challenges Imposed by Axial and Nonplanar Chiral Elements in the Heptapeptide Aglycons. , 1998, Angewandte Chemie.

[53]  D. Boger,et al.  Thermal Atropisomerism of Aglucovancomycin Derivatives: Preparation of (M,M,M)- and (P,M,M)-Aglucovancomycins , 1998 .

[54]  D. Boger,et al.  Synthesis of the vancomycin CDE ring system. , 1998, Bioorganic & medicinal chemistry letters.

[55]  D. Boger,et al.  Thermal atropisomerism of fully functionalized vancomycin CD, DE, and CDE ring systems , 1997 .

[56]  D. Boger,et al.  SYNTHESIS OF THE VANCOMYCIN CD AND DE RING SYSTEMS , 1997 .

[57]  J. Barrow,et al.  Approaches to the Synthesis of the Vancomycin Antibiotics. Synthesis of Orienticin C (Bis-dechlorovancomycin) Aglycon , 1997 .

[58]  J. Barrow,et al.  Synthesis and conformational properties of the M(4-6)(5-7) bicyclic tetrapeptide common to the vancomycin antibiotics , 1997 .

[59]  D. Boger,et al.  Synthesis of (9R,12S)- and (9S,12S)-Cycloisodityrosine and Their N-Methyl Derivatives. , 1997, The Journal of organic chemistry.

[60]  T. Nicas,et al.  Structural modifications of glycopeptide antibiotics , 1997, Medicinal research reviews.

[61]  G. Sheldrick,et al.  Crystal structure of vancomycin. , 1996, Structure.

[62]  D. Boger,et al.  Synthesis of (R)-(4-Methoxy-3,5-dihydroxyphenyl)glycine Derivatives: The Central Amino Acid of Vancomycin and Related Agents , 1996 .

[63]  C. Fan,et al.  A NOVEL ORGANOPHOSPHORUS COMPOUND AS A COUPLING REAGENT FOR PEPTIDE SYNTHESIS , 1996 .

[64]  D. Boger,et al.  Synthesis of appropriately functionalized vancomycin CD and DE ring systems , 1995 .

[65]  D. Boger,et al.  An unusually facile SnAr 14-membered biaryl ether macrocyclization reaction suitable for preparation of the cycloisodityrosine subunit of bouvardin, deoxybouvardin and related agents , 1995 .

[66]  Paul R. Gerber,et al.  MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry , 1995, J. Comput. Aided Mol. Des..

[67]  I. Shibuya,et al.  Silver(I) Ion-Mediated Desulfurization-Condensation of Thiocarbonyl Compounds with Several Nucleophiles , 1994 .

[68]  D. Boger,et al.  Total Synthesis of Bleomycin A2 and Related Agents. 1. Synthesis and DNA Binding Properties of the Extended C-Terminus: Tripeptide S, Tetrapeptide S, Pentapeptide S, and Related Agents , 1994 .

[69]  C. Walsh,et al.  Vancomycin resistance: decoding the molecular logic. , 1993, Science.

[70]  D. Boger,et al.  Vancomycin and ristocetin models: synthesis via the Ullmann macrocyclization reaction , 1993 .

[71]  C. Walsh,et al.  Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. , 1991, Biochemistry.

[72]  D. Boger,et al.  Total synthesis of L,L-isodityrosine and isodityrosine-derived agents: K-13, OF4949-III, and OF4949-IV , 1990 .

[73]  M. Sakaitani,et al.  Syntheses and reactions of silyl carbamates. 1. Chemoselective transformation of amino protecting groups via tert-butyldimethylsilyl carbamates , 1990 .

[74]  H. Moser,et al.  Poly(dipeptamidinium)‐Salze: Definition und Methoden zur präparativen Herstellung , 1986 .

[75]  G. Lajoie,et al.  Backbone-modified oligopeptidic bioregulators. The synthesis and configuration of thioamide, amidoxime, cyanoamidine, and amidrazone analogs of the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe-OR) , 1985 .

[76]  L. Ghosez,et al.  A convenient synthesis of azetidine-2-thiones and azetidin-2-imines , 1983 .

[77]  C. Harris,et al.  VANCOMYCIN: STRUCTURE AND TRANSFORMATION TO CDP-I , 1983 .

[78]  Dudley H. Williams,et al.  Detailed binding sites of the antibiotics vancomycin and ristocetin A: determination of intermolecular distances in antibiotic/substrate complexes by use of the time-dependent NOE , 1983 .

[79]  C. Harris,et al.  Structure of the glycopeptide antibiotic vancomycin. Evidence for an asparagine residue in the peptide , 1982 .

[80]  Michael P. Williamson,et al.  Structure revision of the antibiotic vancomycin. Use of nuclear Overhauser effect difference spectroscopy , 1981 .

[81]  H. Wissmann,et al.  New Peptide Synthesis , 1980 .

[82]  E. Corey,et al.  Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media , 1979 .

[83]  D. Boger,et al.  Oxidative cationic cyclization reactions effected by pyridinium chlorochromate , 1978 .

[84]  D. Boger,et al.  Benzothiazoles as carbonyl equivalents , 1978 .

[85]  Olga Kennard,et al.  Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine , 1978, Nature.

[86]  D. Williams,et al.  Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270-MHz proton magnetic resonance. , 1977, Journal of the American Chemical Society.

[87]  E. Corey,et al.  PYRIDINIUM CHLOROCHROMATE, AN EFFICIENT REAGENT FOR OXIDATION OF PRIMARY AND SECONDARY ALCOHOLS TO CARBONYL COMPOUNDS , 1975 .

[88]  H. Perkins,et al.  The specificity of combination between ristocetins and peptides related to bacterial cell wall mucopeptide precursors. , 1971, The Biochemical journal.

[89]  H. Perkins,et al.  Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin. , 1971, The Biochemical journal.

[90]  H. Perkins,et al.  Physicochemical properties of vancomycin and iodovancomycin and their complexes with diacetyl-L-lysyl-D-alanyl-D-alanine. , 1971, The Biochemical journal.

[91]  P. Tulkens,et al.  Glycopeptide Antibiotics from Conventional Molecules to New Derivatives , 2012 .

[92]  M. Buttner,et al.  Vancomycin resistance VanS/VanR two-component systems. , 2008, Advances in experimental medicine and biology.

[93]  R. Laxminarayan Antibiotic resistance : the unfolding crisis , 2007 .

[94]  National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. , 2004, American journal of infection control.

[95]  Yong Gao Glycopeptide antibiotics and development of inhibitors to overcome vancomycin resistance. , 2002, Natural product reports.

[96]  Dudley H. Williams,et al.  Binding of D-serine-terminating cell-wall analogues to glycopeptide antibiotics , 1998 .

[97]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[98]  Paul A. Bartlett,et al.  Differential binding energy: a detailed evaluation of the influence of hydrogen-bonding and hydrophobic groups on the inhibition of thermolysin by phosphorus-containing inhibitors , 1991 .

[99]  B. E. Evans,et al.  Cholecystokinin antagonists. Synthesis and biological evaluation of 3-substituted 1,4-benzodiazepin-2-amines. , 1988, Journal of medicinal chemistry.

[100]  Raymond C. F. Jones,et al.  Amide bond isosteres: Imidazolines in pseudopeptide chemistry , 1988 .

[101]  H. R. Perkins Vancomycin and related antibiotics. , 1982, Pharmacology & therapeutics.

[102]  H. Perkins Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. , 1969, The Biochemical journal.

[103]  E. Jones,et al.  520. The chemistry of the triterpenes and related compounds. Part XVIII. Elucidation of the structure of polyporenic acid C , 1953 .

[104]  K. Bowden,et al.  13. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols , 1946 .