Mechanosynthesis of nanocomposites in TiO2–B2O3–Mg–Al quaternary system

[1]  T. Lee,et al.  Aluminothermic Reduction of K2TiF6 to Prepare TiC, TiB2, and TiN Nanoparticles , 2014 .

[2]  B. Nasiri-Tabrizi,et al.  Crystallization behavior of nanostructured amorphous tricalcium phosphate under thermal treatment , 2013 .

[3]  M. Khorasani,et al.  Synthesis methods for nanosized hydroxyapatite with diverse structures. , 2013, Acta biomaterialia.

[4]  C. Suryanarayana,et al.  Mechanically alloyed nanocomposites , 2013 .

[5]  M. Yaghoubi,et al.  Effect of the magnesium content on the mechanochemical behavior in ternary system Mg–B2O3–C , 2013 .

[6]  R. Ebrahimi-Kahrizsangi,et al.  Synthesis of B4C, Al2O3, and AlB12 reinforced Al matrix nano composites via mechanochemical method , 2012 .

[7]  A. Ataie,et al.  A facile synthesis of TiB2 nano-particles via mechano-thermal route , 2012 .

[8]  S. Firoozi,et al.  Effect of KCl, NaCl and CaCl2 mixture on volume combustion synthesis of TiB2 nanoparticles , 2011 .

[9]  M. Shamanian,et al.  Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment , 2011 .

[10]  N. Setoudeh,et al.  Mechanochemical synthesis of Al2O3–TiB2 nanocomposite powder from Al–TiO2–H3BO3 mixture , 2011 .

[11]  Jining He,et al.  In situ nanostructured ceramic matrix composite coating prepared by reactive plasma spraying micro-sized Al–Fe2O3 composite powders , 2011 .

[12]  P. Baláž Mechanochemistry in Nanoscience and Minerals Engineering , 2008 .

[13]  Hern Kim,et al.  Use of a nickel-boride–silica nanocomposite catalyst prepared by in-situ reduction for hydrogen production from hydrolysis of sodium borohydride , 2008 .

[14]  Barış Akgün,et al.  Formation of TiB2 by volume combustion and mechanochemical process , 2008 .

[15]  Zhiwei Li,et al.  Structural evolution of TiH2–B4C during ball milling and subsequent heat treatment , 2008 .

[16]  I. Smurov,et al.  Cold spraying of in situ produced TiB2–Cu nanocomposite powders , 2007 .

[17]  A. K. Suri,et al.  Synthesis and consolidation of titanium diboride , 2007 .

[18]  E. Forssberg,et al.  REVIEW OF APPLIED PARTICLE SHAPE DESCRIPTORS AND PRODUCED PARTICLE SHAPES IN GRINDING ENVIRONMENTS. PART I: PARTICLE SHAPE DESCRIPTORS , 2005 .

[19]  M. Graça,et al.  Preparation and optical characterization of hydroxyapatite and ceramic systems with titanium and zirconium formed by dry high-energy mechanical alloying , 2004 .

[20]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[21]  R. Ricceri,et al.  A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis , 2004 .

[22]  J. Subrahmanyam,et al.  Studies on the formation of TiB2 through carbothermal reduction of TiO2 and B2O3 , 2003 .

[23]  L. Takács,et al.  Self-sustaining reactions induced by ball milling , 2002 .

[24]  K. Hu,et al.  TiB2/TiC nanocomposite powder fabricated via high energy ball milling , 2001 .

[25]  A. Azad,et al.  Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique , 2001 .

[26]  N. Welham Formation of TIB2 from Rutile by Room Temperature Ball Milling , 1999 .

[27]  D. Radev,et al.  Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis , 1996 .

[28]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .