On (t, L)-fold perfect authentication and secrecy codes with arbitration

An authentication code with arbitration is t-fold perfect if the numbers of decoding rules and encoding rules meet the information-theoretic lower bounds with equality. A code has perfect L-fold secrecy if observing a set of $$L'\le L$$L′≤L messages in the channel gives no information to the opponent regarding the $$L'$$L′ source states. In this paper, we investigate (t, L)-fold perfect authentication and secrecy codes with arbitration which provide both t-fold perfect and perfect L-fold secrecy. We define a new design, L-secrecy perfect ordered restricted strong partially balanced t-design, which is used to construct a (t, L)-fold perfect authentication and secrecy code with arbitration. We also obtain some infinite classes of (t, 1)-fold perfect authentication and secrecy codes with arbitration, especially for $$t>2$$t>2.

[1]  Jingyuan Chen,et al.  A construction for optimal c-splitting authentication and secrecy codes , 2018, Des. Codes Cryptogr..

[2]  Masakazu Jimbo,et al.  Affine-invariant strictly cyclic Steiner quadruple systems , 2017, Des. Codes Cryptogr..

[3]  Dingyi Pei,et al.  Authentication codes and combinatorial designs , 2005 .

[4]  Douglas R. Stinson,et al.  The combinatorics of authentication and secrecy codes , 2005, Journal of Cryptology.

[5]  Beiliang Du,et al.  Existence of optimal strong partially balanced designs with block size five , 2004, Discret. Math..

[6]  Mingchao Li,et al.  A construction for t-fold perfect authentication codes with arbitration , 2014, Des. Codes Cryptogr..

[7]  Beiliang Du,et al.  A new class of 3-fold perfect splitting authentication codes , 2016, Ars Comb..

[8]  Gustavus J. Simmons,et al.  Message Authentication with Arbitration of Transmitter/Receiver Disputes , 1987, EUROCRYPT.

[9]  Beiliang Du,et al.  The spectrum of optimal strong partially balanced designs with block size five , 2004, Discret. Math..

[10]  Lijun Ji,et al.  Existence of optimal strong partially balanced 3-designs with block size four , 2016, Des. Codes Cryptogr..

[11]  Reihaneh Safavi-Naini,et al.  Characterization of Optimal Authentication Codes with Arbitration , 1999, ACISP.

[12]  Jingjun Bao,et al.  The completion determination of optimal $$(3,4)$$(3,4)-packings , 2015, Des. Codes Cryptogr..

[13]  Thomas Johansson Lower bounds on the probability of deception in authentication with arbitration , 1994, IEEE Trans. Inf. Theory.

[14]  Gennian Ge,et al.  GOB designs for authentication codes with arbitration , 2006, Des. Codes Cryptogr..

[15]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[16]  Satoshi Obana,et al.  Combinatorial Classification of Optimal Authentication Codes with Arbitration , 2000, Des. Codes Cryptogr..

[17]  Marijke De Soete,et al.  New bounds and constructions for authentication/secrecy codes with splitting , 2004, Journal of Cryptology.

[18]  L. Ji Asymptotic Determination of the Last Packing Number of Quadruples , 2006, Des. Codes Cryptogr..

[19]  Lijun Ji,et al.  Constructions of new orthogonal arrays and covering arrays of strength three , 2010, J. Comb. Theory, Ser. A.

[20]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[21]  Gennian Ge,et al.  Some more 5-GDDs and optimal (v), 5, 1)-packings , 2004 .

[22]  K. A. Bush A Generalization of a Theorem due to MacNeish , 1952 .

[23]  Douglas R. Stinson,et al.  A construction for authentication/secrecy codes from certain combinatorial designs , 1987, Journal of Cryptology.

[24]  Du Beiliang Existence of optimal strong partially balanced designs , 2007 .