Multiloop calculations inp-adic string theory and Bruhat-Tits trees

We treat the openp-adic string world sheet as a coset spaceF=T/Γ, whereT is the Bruhat-Tits tree for thep-adic linear groupGL(2, ℚp) and Γ⊂PGL(2, ℚp) is some Schottky group. The boundary of this world sheet corresponds to ap-adic Mumford curve of finite genus. The string dynamics is governed by the local gaussian action on the coset spaceF. The tachyon amplitudes expressed in terms ofp-adic θ-functions are proposed for the Mumford curve of arbitrary genus. We compare them with the corresponding usual archimedean amplitudes. The sum over moduli space of the algebraic curves is conjectured to be expressed in the arithmetic surface terms. We also give the necessary mathematical background including the Mumford approach top-adic algebraic curves. The connection of the problem of closedp-adic strings with the considered topics is discussed.

[1]  David Mumford,et al.  An analytic construction of degenerating curves over complete local rings , 1972 .

[2]  Rui-bin Zhang Lagrangian formulation of open and closed p-adic strings , 1988 .

[3]  D. Mumford Tata Lectures on Theta I , 1982 .

[4]  P. Nelson,et al.  Semi-Off-Shell String Amplitudes , 1987 .

[5]  A. Morozov,et al.  Strings and open riemann surfaces , 1989 .

[6]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[7]  André Weil Foundations of Algebraic Geometry , 1946 .

[8]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[9]  String theory and the structure of universal module space , 1987 .

[10]  M. Frau,et al.  N-string, g-loop vertex for the bosonic string , 1988 .

[11]  L. Gerritzen,et al.  Schottky Groups and Mumford Curves , 1980 .

[12]  A. Zabrodin Non-archimedean strings and Bruhat-Tits trees , 1989 .

[13]  B. Spokoiny Quantum geometry of non-archimedean particles and strings , 1988 .

[14]  Yu. I. Manin,et al.  New dimensions in geometry , 1985 .

[15]  E. Martinec Conformal Field Theory on a (Super)Riemann Surface , 1987 .

[16]  H Wagner,et al.  Algebraic formulation of duality transformations for abelian lattice models , 1982 .

[17]  Y. Manin p-Adic automorphic functions , 1976 .

[18]  H. Yamakoshi Arithmetic of strings , 1988 .

[19]  P. Freund,et al.  Non-archimedean strings , 1987 .

[20]  Igor Volovich,et al.  p-adic string , 1987 .

[21]  H. Ooguri,et al.  SOLITON EQUATIONS AND FREE FERMIONS ON RIEMANN SURFACES , 1987 .

[22]  J. Gervais p-adic analyticity and virasoro algebras for conformal theories in more than two dimensions , 1988 .

[23]  Gerd Faltings,et al.  Calculus on arithmetic surfaces , 1984 .

[24]  P. Freund,et al.  Adelic string N-point amplitudes☆ , 1989 .

[25]  G. Moore,et al.  Strings in the operator formalism , 1988 .

[26]  V. Molchanov,et al.  Harmonic analysis on homogeneous spaces , 1973 .

[27]  E. Witten,et al.  Non-archimedean string dynamics , 1988 .

[28]  LatticeR-gauge theories , 1981 .