Strategic (Timed) Computation Tree Logic

We define extensions of CTL and TCTL with strategic operators, called Strategic CTL (SCTL) and Strategic TCTL (STCTL), respectively. For each of the above logics we give a synchronous and asynchronous semantics, i.e., STCTL is interpreted over networks of extended Timed Automata (TA) that either make synchronous moves or synchronise via joint actions. We consider several semantics regarding information: imperfect (i) and perfect (I), and recall: imperfect (r) and perfect (R). We prove that SCTL is more expressive than ATL for all semantics, and this holds for the timed versions as well. Moreover, the model checking problem for SCTL[ir] is of the same complexity as for ATL[ir], the model checking problem for STCTL[ir] is of the same complexity as for TCTL, while for STCTL[iR] it is undecidable as for ATL[iR]. The above results suggest to use SCTL[ir] and STCTL[ir] in practical applications. Therefore, we use the tool IMITATOR to support model checking of STCTL[ir].

[1]  Wojciech Penczek,et al.  Towards Partial Order Reductions for Strategic Ability , 2018, AAMAS.

[2]  Michal Knapik,et al.  Timed ATL: Forget Memory, Just Count , 2017, AAMAS.

[3]  Alessio Lomuscio,et al.  MCMAS: an open-source model checker for the verification of multi-agent systems , 2017, International Journal on Software Tools for Technology Transfer.

[4]  Wojciech Penczek,et al.  Multi-Valued Verification of Strategic Ability , 2016, AAMAS.

[5]  J. Alex Halderman,et al.  Security Analysis of the Estonian Internet Voting System , 2014, CCS.

[6]  Xiaowei Huang,et al.  Symbolic Model Checking Epistemic Strategy Logic , 2014, AAAI.

[7]  Laurent Fribourg,et al.  IMITATOR 2.5: A Tool for Analyzing Robustness in Scheduling Problems , 2012, FM.

[8]  Ferucio Laurentiu Tiplea,et al.  Model-checking ATL under Imperfect Information and Perfect Recall Semantics is Undecidable , 2011, ArXiv.

[9]  Wojciech Penczek,et al.  Partial Order Reductions for Model Checking Temporal-epistemic Logics over Interleaved Multi-agent Systems , 2010, Fundam. Informaticae.

[10]  Yanjing Wang,et al.  On expressive power and class invariance , 2009, ArXiv.

[11]  Patricia Bouyer,et al.  Model-checking Timed Temporal Logics , 2009, M4M.

[12]  Wojciech Jamroga,et al.  Knowledge and Strategic Ability for Model Checking: A Refined Approach , 2008, MATES.

[13]  P. Čičovački SOCIETY , 2008, Society.

[14]  Wojciech Jamroga,et al.  Alternating-time temporal logics with irrevocable strategies , 2007, TARK '07.

[15]  Wojciech Penczek,et al.  Fully Symbolic Unbounded Model Checking for Alternating-time Temporal Logic1 , 2005, Autonomous Agents and Multi-Agent Systems.

[16]  Wojciech Penczek,et al.  Unbounded model checking for alternating-time temporal logic , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[17]  Pierre-Yves Schobbens,et al.  Alternating-time logic with imperfect recall , 2004, LCMAS.

[18]  Wojciech Jamroga,et al.  Comparing Semantics of Logics for Multi-Agent Systems , 2004, Synthese.

[19]  Aniello Murano,et al.  Dense Real-Time Games , 2002, LICS.

[20]  Aniello Murano,et al.  Automata-theoretic decision of timed games , 2002, Theor. Comput. Sci..

[21]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[22]  Mark Ryan,et al.  On the Relation between Interpreted Systems and Kripke Models , 1997, Agents and Multi-Agent Systems Formalisms, Methodologies, and Applications.

[23]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[24]  Orna Kupferman,et al.  Module Checking , 1996, Inf. Comput..

[25]  Ronald Fagin Reasoning about knowledge , 1995 .

[26]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[27]  R. Alur,et al.  Automata For Modeling Real-Time Systems , 1990, ICALP.

[28]  Wojciech Jamroga,et al.  Knowledge and Ability , 2015 .

[29]  Wojciech Jamroga,et al.  Logics for Reasoning About Strategic Abilities in Multi-player Games , 2015, Models of Strategic Reasoning.