A Performance Comparison of Continuous and Discontinuous Galerkin Methods with Fast Multigrid Solvers

This study presents a fair performance comparison of the continuous finite element method, the symmetric interior penalty discontinuous Galerkin method, and the hybridized discontinuous Galerkin (H...

[1]  Jonathan J. Hu,et al.  Parallel multigrid smoothing: polynomial versus Gauss--Seidel , 2003 .

[2]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[3]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[4]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[5]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[6]  Ulrich Rüde,et al.  A Massively Parallel Multigrid Method for Finite Elements , 2006, Computing in Science & Engineering.

[7]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[8]  Bernardo Cockburn,et al.  A class of embedded discontinuous Galerkin methods for computational fluid dynamics , 2015, J. Comput. Phys..

[9]  Martin Kronbichler,et al.  A massively parallel two-phase flow solver for the simulation of microfluidic chips , 2016 .

[10]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[11]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[12]  Hari Sundar,et al.  Comparison of multigrid algorithms for high‐order continuous finite element discretizations , 2014, Numer. Linear Algebra Appl..

[13]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[14]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[15]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[16]  A. Huerta,et al.  High‐order continuous and discontinuous Galerkin methods for wave problems , 2013 .

[17]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[18]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[19]  Martin Kronbichler,et al.  Algorithms and data structures for massively parallel generic adaptive finite element codes , 2011, ACM Trans. Math. Softw..

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  Rainald Löhner,et al.  Improved error and work estimates for high‐order elements , 2013 .

[22]  Rainald Löhner,et al.  A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids , 2006 .

[23]  Gerhard Wellein,et al.  Introduction to High Performance Computing for Scientists and Engineers , 2010, Chapman and Hall / CRC computational science series.

[24]  Barbara I. Wohlmuth,et al.  Performance and Scalability of Hierarchical Hybrid Multigrid Solvers for Stokes Systems , 2015, SIAM J. Sci. Comput..

[25]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[26]  Thomas A. Manteuffel,et al.  Algebraic multigrid for higher-order finite elements , 2005 .

[27]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement , 1983 .

[28]  Koen Hillewaert,et al.  Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries , 2013 .

[29]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[30]  Dmitri Kuzmin,et al.  Scale separation in fast hierarchical solvers for discontinuous Galerkin methods , 2015, Appl. Math. Comput..

[31]  Jonathan J. Hu,et al.  A new smoothed aggregation multigrid method for anisotropic problems , 2007, Numer. Linear Algebra Appl..

[32]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[33]  Ray S. Tuminaro,et al.  Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections , 2014, Numer. Linear Algebra Appl..

[34]  Nadine Eberhardt,et al.  Computer Organization And Design 2nd Edition , 2016 .

[35]  Bernardo Cockburn,et al.  Multigrid for an HDG method , 2013, IMA Journal of Numerical Analysis.

[36]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[37]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[38]  Hari Sundar,et al.  Parallel geometric-algebraic multigrid on unstructured forests of octrees , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[39]  Haiying Wang,et al.  Superconvergent discontinuous Galerkin methods for second-order elliptic problems , 2009, Math. Comput..

[40]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study in 3D , 2016, J. Sci. Comput..

[41]  Katharina Kormann,et al.  Parallel Finite Element Operator Application: Graph Partitioning and Coloring , 2011, 2011 IEEE Seventh International Conference on eScience.

[42]  William Thielicke FFT? , 2020 .

[43]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[44]  Wolfgang A. Wall,et al.  Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation , 2016 .

[45]  Guido Kanschat,et al.  Multilevel methods for discontinuous Galerkin FEM on locally refined meshes , 2004 .

[46]  Hari Sundar,et al.  FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube , 2014, SIAM J. Sci. Comput..

[47]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[48]  J. Peraire,et al.  Efficiency of high‐order elements for continuous and discontinuous Galerkin methods , 2013 .

[49]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[50]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[51]  Jed Brown,et al.  Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D , 2010, J. Sci. Comput..

[52]  GUIDO KANSCHAT,et al.  ADAPTIVE MULTILEVEL METHODS WITH LOCAL SMOOTHING , 2010 .

[53]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[54]  Katharina Kormann,et al.  A generic interface for parallel cell-based finite element operator application , 2012 .

[55]  Stefan Turek,et al.  EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications , 2014, Euro-Par Workshops.