Simultaneous logic operations and their inverse in a single circuit using simple optical components

Abstract Logic units are the basic building blocks of many complex computational operations. In this paper an optical circuit using simple optical components has been proposed which is capable to perform all 16-optical logic (two variables) operations without changing the design of the circuit. The circuit has two outputs, one is complement to the other and hence optical input data must be at any one output. So, no data loss happens during the operation.

[1]  Roberto Proietti,et al.  Regenerative and reconfigurable all-optical logic gates for ultra-fast applications , 2005 .

[2]  Tanay Chattopadhyay Optical programmable Boolean logic unit. , 2011, Applied optics.

[3]  Kazuro Kikuchi,et al.  40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre , 2005 .

[4]  Lin Yang,et al.  Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators. , 2011, Optics express.

[5]  Richard A. Soref,et al.  Universal reconfigurable optical logic with silicon-on-insulator resonant structures , 2007 .

[6]  Lei Zhang,et al.  Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. , 2011, Optics letters.

[7]  T Kurokawa,et al.  Bistable spatial light modulator using a ferroelectric liquid crystal. , 1990, Optics letters.

[8]  S. K. Garai A Novel All-Optical Frequency-Encoded Method to Develop Arithmetic and Logic Unit (ALU) Using Semiconductor Optical Amplifiers , 2011, Journal of Lightwave Technology.

[9]  Kyriakos E. Zoiros,et al.  Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer , 2006 .

[10]  T Yamashita,et al.  Polarization beam splitter based on a photonic crystal heterostructure. , 2006, Optics letters.

[11]  M W Geis,et al.  30 to 50 ns liquid-crystal optical switches. , 2010, Optics express.

[12]  J. Jaques,et al.  Study of all-optical XOR using Mach-Zehnder Interferometer and differential scheme , 2004, IEEE Journal of Quantum Electronics.

[13]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[14]  Bo Lu,et al.  Binary optical switch and programmable optical logic gate based on the integration of GaAs/AlGaAs surface-emitting lasers and heterojunction phototransistors , 1994, IEEE Photonics Technology Letters.

[15]  Paul R. Prucnal,et al.  Physics in the Whirlwind of Optical Communications , 2000 .

[16]  Dexiu Huang,et al.  A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection. , 2009, Optics express.

[17]  Shanhui Fan,et al.  Angular and polarization properties of a photonic crystal slab mirror. , 2004, Optics express.

[18]  Xianyu Su,et al.  Polarization-independent bidirectional 4×4 optical switch in free space , 2010 .

[19]  Richard Soref,et al.  Reconfigurable optical directed-logic circuits using microresonator-based optical switches. , 2011, Optics express.

[20]  M A Karim,et al.  Multiprocessor design using polarization-encoded optical shadow-casting. , 1990, Applied optics.

[21]  Jing Xu,et al.  Reconfigurable All-Optical Logic Gates for Multi-Input Differential Phase-Shift Keying Signals: Design and Experiments , 2009, Journal of Lightwave Technology.

[22]  C. R. Giles,et al.  All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers. , 2009, Optics express.

[23]  L. Poti,et al.  Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate , 2006, IEEE Photonics Technology Letters.

[24]  Joseph Shamir,et al.  Optics inspired logic architecture. , 2007, Optics express.

[25]  Takashi Inoue,et al.  Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. , 2008, Optics express.

[26]  C H Kwok,et al.  All-optical picoseconds logic gates based on a fiber optical parametric amplifier. , 2008, Optics express.

[27]  Sang‐Kook Han,et al.  All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment , 2006, Journal of Lightwave Technology.

[28]  Richard A. Soref,et al.  Generalized optical logic elements – GOLEs , 2007 .

[29]  Guifang Li,et al.  Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier , 2006, IEEE Photonics Technology Letters.

[30]  T. Kurokawa,et al.  Ferroelectric liquid-crystal spatial light modulator achieving bipolar image operation and cascadability. , 1992, Applied optics.

[31]  Thomas Schneider,et al.  Nonlinear Optics in Telecommunications , 2004 .

[32]  Yoshiki Ichioka,et al.  Optical logic array processor using shadowgrams , 1983 .

[33]  M A Karim,et al.  Associative polarization-encoded optical shadow casting: gray-level image encoding for serial and parallel operations. , 1989, Applied optics.

[34]  Young Jin Jung,et al.  One-Level Simplification Method for All-Optical Combinational Logic Circuits , 2008, IEEE Photonics Technology Letters.

[35]  A A Awwal,et al.  Polarization-encoded optical shadow casting: design of a J-Kflip-flop. , 1988, Applied optics.

[36]  Chii-Chang Chen,et al.  Photonic crystal beam splitters. , 2004, Applied optics.

[37]  A Belardini,et al.  Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab. , 2009, Optics express.

[38]  M A Karim,et al.  Polarization-encoded optical shadow-casting programmable logic array: simultaneous generation of multiple outputs. , 1988, Applied optics.

[39]  Lin Li Wu,et al.  Reconfigurable optical logic unit with a terahertz optical asymmetric demultiplexer and electro-optic switches. , 2008, Applied optics.

[40]  J. N. Roy,et al.  Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device--alternative approach. , 2007, Applied optics.