#COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.

[1]  David N. LeBard,et al.  WESTPA 2.0: High-performance upgrades for weighted ensemble simulations and analysis of longer-timescale applications , 2021, bioRxiv.

[2]  Zeynep Tufekci,et al.  Airborne transmission of respiratory viruses , 2021, Science.

[3]  A. Walls,et al.  Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants , 2021, bioRxiv.

[4]  C. Lorson,et al.  Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses , 2021, Journal of Autoimmunity.

[5]  C. Baldauf,et al.  Better force fields start with better data: A data set of cation dipeptide interactions , 2021, Scientific Data.

[6]  Tham Kwok Wai,et al.  Viral Load of SARS-CoV-2 in Respiratory Aerosols Emitted by COVID-19 Patients while Breathing, Talking, and Singing , 2021, medRxiv.

[7]  Venkatram Vishwanath,et al.  Stream-AI-MD: streaming AI-driven adaptive molecular simulations for heterogeneous computing platforms , 2021, PASC.

[8]  Thomas F. Miller,et al.  OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy. , 2021, The Journal of chemical physics.

[9]  G. Ciccotti,et al.  Dynamical nonequilibrium molecular dynamics reveals the structural basis for allostery and signal propagation in biomolecular systems , 2021, The European Physical Journal B.

[10]  A. Mulholland,et al.  The fatty acid site is coupled to functional motifs in the SARS-CoV-2 spike protein and modulates spike allosteric behaviour , 2021, bioRxiv.

[11]  J. Warwicker,et al.  Predicted pH-dependent stability of SARS-CoV-2 spike protein trimer from interfacial acidic groups , 2021, bioRxiv.

[12]  Rick L. Stevens,et al.  High-Throughput Virtual Screening and Validation of a SARS-CoV-2 Main Protease Noncovalent Inhibitor , 2021, bioRxiv.

[13]  S. McSweeney,et al.  Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1 , 2021, Nature Communications.

[14]  Rommie E. Amaro,et al.  A glycan gate controls opening of the SARS-CoV-2 spike protein , 2021, bioRxiv.

[15]  P. Agarwal,et al.  Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics , 2021, bioRxiv.

[16]  Lei Huang,et al.  AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics , 2020, bioRxiv.

[17]  J. Reid,et al.  Accurate Representations of the Microphysical Processes Occurring during the Transport of Exhaled Aerosols and Droplets , 2020, ACS central science.

[18]  Lillian T. Chong,et al.  A Minimal, Adaptive Binning Scheme for Weighted Ensemble Simulations , 2020, bioRxiv.

[19]  A. Kolocouris,et al.  Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers , 2020, Nature Structural & Molecular Biology.

[20]  J. Warwicker A model for pH coupling of the SARS-CoV-2 spike protein open/closed equilibrium , 2020, bioRxiv.

[21]  Daniel M. Zuckerman,et al.  Accelerated estimation of long-timescale kinetics from weighted ensemble simulation via non-Markovian "microbin" analysis. , 2020, Journal of chemical theory and computation.

[22]  Peter B Rosenthal,et al.  Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion , 2020, Nature.

[23]  Ralf Bartenschlager,et al.  Structures and distributions of SARS-CoV-2 spike proteins on intact virions , 2020, Nature.

[24]  J. Diedrich,et al.  Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate , 2020, bioRxiv.

[25]  Yi Wang,et al.  Scalable molecular dynamics on CPU and GPU architectures with NAMD. , 2020, The Journal of chemical physics.

[26]  K. Fennelly,et al.  Particle sizes of infectious aerosols: implications for infection control , 2020, The Lancet Respiratory Medicine.

[27]  Frederick R. Manby,et al.  OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features , 2020, The Journal of chemical physics.

[28]  Beata Turoňová,et al.  In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges , 2020, Science.

[29]  L. Morawska,et al.  Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event , 2020, medRxiv.

[30]  E. Lindahl,et al.  Heterogeneous Parallelization and Acceleration of Molecular Dynamics Simulations in GROMACS , 2020, The Journal of chemical physics.

[31]  Rommie E. Amaro,et al.  Beyond Shielding: The Roles of Glycans in SARS-CoV-2 Spike Protein , 2020, bioRxiv.

[32]  Melih Sener,et al.  Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales , 2020, Parallel Comput..

[33]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[34]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[35]  Christopher J. Woods,et al.  A general mechanism for signal propagation in the nicotinic acetylcholine receptor family. , 2019, Journal of the American Chemical Society.

[36]  Gareth W. Hughes,et al.  The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH , 2019, Scientific Reports.

[37]  Matteo Turilli,et al.  DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein Folding , 2019, 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS).

[38]  G. Radicioni,et al.  Endotracheal Tube Mucus as a Source of Airway Mucus for Rheological Study. , 2019, American journal of physiology. Lung cellular and molecular physiology.

[39]  Martin Grininger,et al.  Protein denaturation at the air-water interface and how to prevent it , 2019, eLife.

[40]  Sunhwan Jo,et al.  CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates , 2019, Glycobiology.

[41]  Lillian T. Chong,et al.  Protein–protein binding pathways and calculations of rate constants using fully-continuous, explicit-solvent simulations† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc04811h , 2018, bioRxiv.

[42]  D. Zuckerman,et al.  Computational estimation of ms-sec atomistic folding times , 2018, bioRxiv.

[43]  Oliver Horlacher,et al.  Glycomics@ExPASy: Bridging the Gap* , 2018, Molecular & Cellular Proteomics.

[44]  Adrianne L. Stefanski,et al.  Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. , 2018, Biochemical Society Transactions.

[45]  M. T. Young,et al.  Deep clustering of protein folding simulations , 2018, bioRxiv.

[46]  Yan Li,et al.  Structural model of the SARS coronavirus E channel in LMPG micelles , 2018, Biochimica et Biophysica Acta (BBA) - Biomembranes.

[47]  Benoît Roux,et al.  Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions. , 2018, The journal of physical chemistry. B.

[48]  Daniel M Zuckerman,et al.  Weighted Ensemble Simulation: Review of Methodology, Applications, and Software. , 2017, Annual review of biophysics.

[49]  G. Ciccotti,et al.  Non-equilibrium by molecular dynamics: a dynamical approach , 2016 .

[50]  Klaus Schulten,et al.  Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing , 2016, Parallel Comput..

[51]  Klaus Schulten,et al.  Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms , 2016, ISC Workshops.

[52]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[53]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[54]  Joshua L Adelman,et al.  WESTPA: an interoperable, highly scalable software package for weighted ensemble simulation and analysis. , 2015, Journal of chemical theory and computation.

[55]  Rommie E. Amaro,et al.  LipidWrapper: An Algorithm for Generating Large-Scale Membrane Models of Arbitrary Geometry , 2014, PLoS Comput. Biol..

[56]  Klaus Schulten,et al.  GPU-accelerated molecular visualization on petascale supercomputing platforms , 2013, UltraVis@SC.

[57]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[58]  B. Roux,et al.  Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. , 2013, The journal of physical chemistry. B.

[59]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[60]  Klaus Schulten,et al.  Early experiences scaling VMD molecular visualization and analysis jobs on blue waters , 2013, 2013 Extreme Scaling Workshop (xsw 2013).

[61]  L. Chong,et al.  Simultaneous Computation of Dynamical and Equilibrium Information Using a Weighted Ensemble of Trajectories , 2012, Journal of chemical theory and computation.

[62]  Alexander D. MacKerell,et al.  Glycan reader: Automated sugar identification and simulation preparation for carbohydrates and glycoproteins , 2011, J. Comput. Chem..

[63]  Nir London,et al.  Sub‐angstrom modeling of complexes between flexible peptides and globular proteins , 2010, Proteins.

[64]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[65]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[66]  Alexander D. MacKerell,et al.  CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. , 2009, Journal of chemical theory and computation.

[67]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[68]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[69]  John W. Ferkany,et al.  Receptor Binding , 2005 .

[70]  Laxmikant V. Kalé,et al.  NAMD: Biomolecular Simulation on Thousands of Processors , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[71]  K. Kobayashi,et al.  Crystal structure of human serum albumin at 2.5 A resolution. , 1999, Protein engineering.

[72]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[73]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[74]  G. Huber,et al.  Weighted-ensemble Brownian dynamics simulations for protein association reactions. , 1996, Biophysical journal.

[75]  W. Wooster,et al.  Crystal structure of , 2005 .

[76]  C. Tanford Protein denaturation. , 1968, Advances in protein chemistry.