High current density 2D/3D MoS2/GaN Esaki tunnel diodes

The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at −1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

[1]  C. Hu,et al.  2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures , 2016 .

[2]  T. O’Regan,et al.  Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. , 2016, ACS nano.

[3]  Ahmad Zubair,et al.  Transport Properties of a MoS₂/WSe₂ Heterojunction Transistor and Its Potential for Application , 2016 .

[4]  M. Dresselhaus,et al.  Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. , 2016, Nano letters.

[5]  C. Hu,et al.  2 D-2 D tunneling field-effect transistors using WSe 2 / SnSe 2 heterostructures , 2016 .

[6]  Xiaoqiang Li,et al.  Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity , 2015, 1512.06867.

[7]  Yiying Wu,et al.  Transferred large area single crystal MoS2 field effect transistors , 2015 .

[8]  Peng Wang,et al.  Gate tunable monolayer MoS2/InP heterostructure solar cells , 2015 .

[9]  Huikai Zhong,et al.  Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride , 2015, Scientific Reports.

[10]  M. S. Jeong,et al.  Semiconductor-Insulator-Semiconductor Diode Consisting of Monolayer MoS2, h-BN, and GaN Heterostructure. , 2015, ACS nano.

[11]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[12]  P. Ajayan,et al.  3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. , 2015, Nano letters.

[13]  Yiying Wu,et al.  Layer-transferred MoS2/GaN PN diodes , 2015, 1505.05196.

[14]  Jiansheng Jie,et al.  MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High‐Detectivity, Self‐Driven Visible–Near Infrared Photodetectors , 2015 .

[15]  D. Muller,et al.  Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. , 2015, Nano letters.

[16]  Q. Xue,et al.  Electrical and photovoltaic characteristics of MoS2/Si p-n junctions , 2015 .

[17]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[18]  P. Ajayan,et al.  3 D Band Diagram and Photoexcitation of 2 D − 3 D Semiconductor Heterojunctions , 2015 .

[19]  Yiying Wu,et al.  Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions , 2014 .

[20]  Shanshan Yao,et al.  Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS₂ films onto arbitrary substrates. , 2014, ACS nano.

[21]  R. Ahuja,et al.  Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures , 2014 .

[22]  Yiying Wu,et al.  Epitaxial Growth of Large Area Single-Crystalline Few-Layer MoS2 with Room Temperature Mobility of 192 cm2V-1s-1 , 2014, 1405.2479.

[23]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[24]  Thomas F. Kent,et al.  p-type doping of MoS2 thin films using Nb , 2014 .

[25]  Yiying Wu,et al.  Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions , 2014 .

[26]  Mingzhe Yu,et al.  Epitaxial growth of large area single-crystalline few-layer MoS 2 with high space charge mobility of 192 cm 2 V − 1 s − 1 , 2014 .

[27]  S. Salahuddin,et al.  High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector , 2013, Scientific Reports.

[28]  C. D. Walle,et al.  Effects of strain on band structure and effective masses in MoS$_2$ , 2012 .

[29]  J. Coleman,et al.  Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation , 2011, Advanced materials.

[30]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[31]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[32]  R. Dupuis,et al.  Optimization of Fe doping at the regrowth interface of GaN for applications to III-nitride-based heterostructure field-effect transistors , 2007 .

[33]  Mingqiang Bao,et al.  Accurately measuring current-voltage characteristics of tunnel diodes , 2006, IEEE Transactions on Electron Devices.

[34]  Suhuai Wei,et al.  Origin of p -type doping difficulty in ZnO: The impurity perspective , 2002 .

[35]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[36]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[37]  S. Denbaars,et al.  Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy , 1997 .

[38]  D. Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.

[39]  Isamu Akasaki,et al.  P-TYPE CONDUCTION IN MG-DOPED GAN AND AL0.08GA0.92N GROWN BY METALORGANIC VAPOR PHASE EPITAXY , 1994 .

[40]  R. S. Title,et al.  Band Structure of the Layered Transition-Metal Dichalcogenides: An Experimental Study by Electron Paramagnetic Resonance on Nb-Doped MoS 2 , 1972 .

[41]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[42]  L. Esaki New Phenomenon in Narrow Germanium p-n Junctions , 1958 .