INTERACTIVE DIAGNOSTIC PLOTS FOR MULTIDIMENSIONAL SCALING WITH APPLICATIONS IN PSYCHOSIS DISORDER DATA ANALYSIS

Multidimensional scaling (MDS) represents objects as points in an Eu- clidean space so that the perceived distances between points can reflect similarity (or dissimilarity) between objects. To be practical, the dimension of the projected space usually is kept as low as possible. Thus, it is unavoidable that part of the information in the original proximity matrix will be lost in the MDS plot. To as- sess the overall quality of projection, classical MDS diagnostic indices and plots are available. However, these global-fitness methods do not address another issue: how well represented is a specified individual object or a pair of objects in the projected space? Here, via the concept of color-linkage, a dynamic graphical sys- tem is developed for revealing the subtle spatial lack-of-fit pattern for any specified individual object. The proposed method is illustrated by using a data set from a psychopathological research project.

[1]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[2]  Andrew W. Mead Review of the Development of Multidimensional Scaling Methods , 1992 .

[3]  Forrest W. Young,et al.  Graphical Sensitivity Analysis for Multidimensional Scaling , 1994 .

[4]  Daniel B. Carr,et al.  26 Statistical graphics and visualization , 1993, Computational Statistics.

[5]  J. Leeuw Applications of Convex Analysis to Multidimensional Scaling , 2000 .

[6]  Sharon L. Weinberg,et al.  Confidence regions for INDSCAL using the jackknife and bootstrap techniques , 1984 .

[7]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[8]  J. Ramsay Confidence regions for multidimensional scaling analysis , 1978 .

[9]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[10]  N C Andreasen,et al.  Symptoms of Schizophrenia: Methods, Meanings, and Mechanisms , 1995 .

[11]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[12]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[13]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[14]  Andreas Buja,et al.  Interactive data visualization using focusing and linking , 1991, Proceeding Visualization '91.

[15]  Daniel B. Carr,et al.  Statistical Graphics and Visualization , 2002 .

[16]  Niels G. Waller The Scale for the Assessment of Negative Symptoms , 1995 .

[17]  Forrest W. Young,et al.  Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features , 1977 .

[18]  J. Ramsay Some Statistical Approaches to Multidimensional Scaling Data , 1982 .

[19]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[20]  Luke Tierney Lisp-Stat: An Object-Oriented Environment for Statistical Computing and Dynamic Graphics , 1990 .

[21]  C. M. Newton GRAPHICS: FROM ALPHA TO OMEGA IN DATA ANALYSIS , 1978 .

[22]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[23]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[24]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[25]  S. Klimidis,et al.  Positive and negative symptoms in neuroleptic-free psychotic inpatients , 1995, Schizophrenia Research.

[26]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[27]  John W. Tukey,et al.  PRIM-9: An Interactive Multi-dimensional Data Display and Analysis System , 1975, ACM Pacific.

[28]  S. Klimidis,et al.  Positive and negative symptoms in the psychoses: Multidimensional scaling of SAPS and SANS items , 1992, Schizophrenia Research.

[29]  A. Springall,et al.  A review of multidimensional scaling , 1978 .

[30]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .