Enumerative combinatorics

good, does not support this; the label ‘Example’ is given in a rather small font followed by a ‘PROOF,’ and the body of an example is nonitalic, utterly unlike other statements accompanied by demonstrations. The proofs of some theorems are continued after the statements and proofs of needed lemmas with no helpful demarcations (“Continuation of proof of Theorem . . . ”). Finally, at least one lemma (3.34) has a corollary with no theorem or proposition in sight; the status of Lemma 3.36 is also unclear. Lemma 1.16 on page 12 giving a closed formula for Stirling numbers of the second kind is important enough to figure in the proof of capstone Theorem 3.71 (Schlömilch’s formula) on page 114. This nonstandard approach to chapter organization may impede some readers’ comprehending the structure of the author’s highly purposeful discussion. Review of 3 Enumerative Combinatorics Author of Book: Charalambos A. Charalambides Publisher: Chapman & Hall/CRC ISBN L-58488-290-5, Hard Cover, 609 pages

[1]  Percy Alexander MacMahon,et al.  Second Memoir on the Compositions of Numbers , 1908 .

[2]  P. Hall,et al.  A partition formula connected with Abelian groups , 1938 .

[3]  Norman Biggs,et al.  The roots of combinatorics , 1979 .

[4]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[5]  Hans Rademacher,et al.  On the Partition Function p(n) , 1938 .

[6]  J. A. Green,et al.  The characters of the finite general linear groups , 1955 .

[7]  P. A. Macmahon,et al.  The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of any Assemblage of Objects , 1913 .

[8]  Robert Cori,et al.  Un code pour les graphes planaires et ses applications , 1973 .

[9]  M. Purtill André permutations, lexicographic shellability and the cd-index of a convex polytope , 1993 .

[10]  Michelle L. Wachs,et al.  q-Hook length formulas for forests , 1989, J. Comb. Theory, Ser. A.

[11]  Ivan Niven Formal Power Series , 1969 .

[12]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[13]  Igor Pak,et al.  Partition bijections, a survey , 2006 .

[14]  David Bressoud Review of "Mathematics and Social Utopias in France: Olinde Rodrigues and His Times" by Simon Altmann and Edouardo L. Ortiz , 2006 .

[15]  Jason E. Fulman Random matrix theory over finite fields , 2001 .

[16]  Richard Stong,et al.  Some asymptotic results on finite vector spaces , 1988 .

[17]  L. Carlitz Sequences and inversions , 1970 .

[18]  A. Kuznetsov,et al.  Increasing trees and alternating permutations , 1994 .

[19]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[20]  L. Moser On Solutions of xd = 1 In Symmetric Groups , 1955, Canadian Journal of Mathematics.

[21]  Miklós Bóna A combinatorial proof of a result of hetyei and reiner on Foata-Strehl-type permutation trees , 1997 .

[22]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[23]  R. A. Proctor Let's Expand Rota's Twelvefold Way For Counting Partitions! , 2006, math/0606404.

[24]  Edward A. Bender,et al.  On Buckhiester's Enumeration of n x n Matrices , 1974, J. Comb. Theory A.

[25]  E. Netto,et al.  Lehrbuch der Combinatorik , 1902 .

[26]  Dominique Foata,et al.  Major Index and Inversion Number of Permutations , 1978 .

[27]  Fa Dick Permutations with given ups and downs , 1970 .

[28]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[29]  Gérard Viennot,et al.  Permutations ayant une forme donnee , 1979, Discret. Math..

[30]  D. Foata ON THE NETTO INVERSION NUMBER OF A SEQUENCE , 1968 .

[31]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[32]  Edward A. Bender A lifting theorem for formal power series , 1974 .

[33]  Dominique Foata,et al.  Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers , 1974 .

[34]  Gábor Hetyei,et al.  Permutation Trees and Variation Statistics , 1998, Eur. J. Comb..

[35]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[36]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[37]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[38]  Károly Jordán Calculus of finite differences , 1951 .

[39]  Robert Donaghey,et al.  Alternating Permutations and Binary Increasing Trees , 1975, J. Comb. Theory, Ser. A.

[40]  D. Foata,et al.  Distributions Euleriennes et Mahoniennes sur le Groupe des Permutations , 1977 .

[41]  Joseph P. S. Kung,et al.  The cycle structure of a linear transformation over a finite field , 1981 .

[42]  Kent E. Morrison Integer sequences and matrices over finite fields , 2006 .

[43]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[44]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[45]  W. T. Tutte,et al.  On elementary calculus and the good formula , 1975 .

[46]  Sergey Kitaev,et al.  Classification of bijections between 321- and 132-avoiding permutations , 2008, 0805.1325.

[47]  G. L. Collected Papers , 1912, Nature.

[48]  J. L. Berggren,et al.  History of Greek mathematics: A survey of recent research , 1984 .

[49]  Leonard Carlitz,et al.  Congruences for Eulerian numbers , 1953 .