Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology.
暂无分享,去创建一个
Elena Fortunati | Jose Maria Kenny | Luigi Torre | Julien Bras | Raquel Verdejo | Miguel A. López-Manchado | E. Fortunati | J. Kenny | R. Verdejo | J. Bras | L. Torre | M. López-Manchado | Natacha Bitinis | N. Bitinis
[1] A. Dufresne,et al. Processing and Structural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber , 2005 .
[2] E. Saino,et al. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles , 2012 .
[3] M. Statheropoulos,et al. TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components , 2006 .
[4] P. Dubois,et al. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. , 2011, Biomacromolecules.
[5] P. Cassagnau,et al. Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites , 2012 .
[6] Marielle Henriksson,et al. Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.
[7] R. Overend,et al. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose , 1993 .
[8] P. Chang,et al. Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker‐graft‐polycaprolactone , 2009 .
[9] Luc Avérous,et al. Nano-biocomposites: Biodegradable polyester/nanoclay systems , 2009 .
[10] P. Dubois,et al. Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties , 2011 .
[11] Julien Bras,et al. Starch nanoparticles: a review. , 2010, Biomacromolecules.
[12] L. Lucia,et al. Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.
[13] Alain Dufresne,et al. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.
[14] M. Statheropoulos,et al. A comparative study of the effects of fire retardants on the pyrolysis of cellulose and Pinus halepensis pine-needles , 1995 .
[15] K. Mikedi,et al. Chemometric methods for studying the effects of chemicals on cellulose pyrolysis by thermogravimetry-mass spectrometry , 2003 .
[16] P. Dubois,et al. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .
[17] P. Cassagnau,et al. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends , 2009 .
[18] J. Rhim. Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications , 2007 .
[19] A. Nogales,et al. Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering , 2012 .
[20] A. Dufresne,et al. New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. , 2010, Langmuir : the ACS journal of surfaces and colloids.
[21] M. Wada,et al. High-yield Carbonization of Cellulose by Sulfuric Acid Impregnation , 2001 .
[22] P. Cassagnau. Melt rheology of organoclay and fumed silica nanocomposites , 2008 .
[23] K. Oksman,et al. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials , 2007 .
[24] Janne Laine,et al. Heterogeneous modification of various celluloses with fatty acids , 2011 .
[25] Y. Ono,et al. Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process , 2008 .
[26] A. Magnin,et al. Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers , 2011 .
[27] K. Oksman,et al. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites , 2007 .
[28] M. Jonoobi,et al. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion , 2010 .
[29] E. Fortunati,et al. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. , 2012, Carbohydrate polymers.
[30] Fujin Ai,et al. Structure and Mechanical Properties of Poly(lactic acid) Filled with (Starch nanocrystal)‐graft‐poly(ε‐caprolactone) , 2008 .
[31] Enyong Ding,et al. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups , 2007 .
[32] Qi Zhou,et al. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects , 2010 .
[33] W. E. Franklin. Direct pyrolysis of cellulose and cellulose derivatives in a mass spectrometer with a data system , 1979 .
[34] M. Roman,et al. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.
[35] Kristiina Oksman,et al. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .
[36] S. Kyriakou,et al. Quantitative thermogravimetric-mass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis , 2000 .
[37] Eduardo Ruiz-Hitzky,et al. Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials , 2007 .
[38] Y. Inoue,et al. Polymorphism and isomorphism in biodegradable polyesters , 2009 .
[39] Véronique Favier,et al. Nanocomposite materials from latex and cellulose whiskers , 1995 .
[40] A. Dufresne,et al. Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation , 2011 .