Electric dipoles perpendicular to a stick-slip plane

Abstract Stick-slip tests of pre-cut quartz pegmatite cylinders under tri-axial compression were conducted with a solenoid or toroidal coil near or surrounding the stick-slip plane. The solenoid coil detected damped oscillating signals during stick-slip events. The toroidal coil detected similar oscillations but on an exponential decay. The damped oscillating component is the induced electromotive force (emf) voltage due to piezoelectric polarizations of individual quartz crystals or due to the Earth's magnetostatic field when the coils vibrate. The exponentially decaying component is the induced emf voltage due to electric dipoles approximately perpendicular to the stick-slip plane. These perpendicular dipoles can be explained by the formation of surface charges on separate asperities. The exponential decay of the perpendicular dipoles is due to exponential diffusion and recombination of the separate charges. Electric dipoles on separated asperities may also exist on the geophysical scale: on fault planes during faulting.

[1]  G. D. Toro,et al.  Friction falls towards zero in quartz rock as slip velocity approaches seismic rates , 2004, Nature.

[2]  K. Masuda,et al.  Electromagnetic and acoustic emission associated with rock fracture , 1989 .

[3]  John Summerscales,et al.  Non‐destructive Testing of Fibre‐reinforced Plastics Composites, Vol. 2 , 1992 .

[4]  Motoji Ikeya,et al.  Electromagnetic Fault for Earthquake Lightning , 1996 .

[5]  Kazuo Oike,et al.  Electromagnetic radiations from rocks , 1985 .

[6]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .

[7]  Gabor Korvin,et al.  Fractal models in the earth sciences , 1992 .

[8]  D. Bahat,et al.  Experimental and theoretical investigations of electromagnetic radiation induced by rock fracture , 2000 .

[9]  M. Ikeya,et al.  A Dark Discharge Model of Earthquake Lightning , 1998 .

[10]  G. D. Rieck,et al.  Investigations of the disturbed layer of ground quartz , 1964 .

[11]  早川 正士,et al.  Seismo electromagnetics : lithosphere-atmosphere-ionosphere coupling , 2002 .

[12]  U. Nitsan,et al.  Electromagnetic emission accompanying fracture of quartz-bearing rocks , 1977 .

[13]  I. H. Marshall,et al.  Non-destructive Testing of Fibre-reinforced Plastics Composites: Volume 1. Edited by John Summerscales, 1987. Elsevier Applied Science Publishers, London. ISBN 1 85166 093 3. Price: £42·00 , 1988 .

[14]  H. Nagahama,et al.  Tribochemical wearing in S-C mylonites and its implication to lithosphere stress level , 2002 .

[15]  H. Hashimoto,et al.  Emission of charged particles from indentation fracture of rocks , 1990, Nature.

[16]  F. Freund,et al.  Time-resolved study of charge generation and propagation in igneous rocks , 2000 .

[17]  H. Nagahama,et al.  Interpretation of charging on fracture or frictional slip surface of rocks , 2002 .

[18]  Ares J. Rosakis,et al.  Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition , 2004, Science.

[19]  H. H. Schloessin Experiments on the electrification and luminescence of minerals and possible origins of EQLs and sferics , 1985 .

[20]  Hiroyuki Nagahama,et al.  Thermodynamics of line defects and transient electric current: electromagnetic field generation in earthquake preparation zone , 1998 .

[21]  J. Dieterich,et al.  IMAGING SURFACE CONTACTS : POWER LAW CONTACT DISTRIBUTIONS AND CONTACT STRESSES IN QUARTZ, CALCITE, GLASS AND ACRYLIC PLASTIC , 1996 .

[22]  J. Arends,et al.  Color Centers in Quartz Produced by Crushing , 1963 .

[23]  F. Vallianatos,et al.  Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals , 1998 .

[24]  F. Freund Charge Generation and Propagation in Igneous Rocks , 2002 .

[25]  Avinoam Rabinovitch,et al.  Parametrization of electromagnetic radiation pulses obtained by triaxial fracture of granite samples , 1998 .

[26]  H. Nagahama,et al.  Frictional melting can terminate seismic slips: Experimental results of stick‐slips , 2004 .

[27]  P. D. Ritchie,et al.  Physicochemical Studies on Dusts. VI. Electron. Optical Examination of Finely Ground Silica. , 2007 .

[28]  L. Johnson,et al.  How strong is an asperity , 1999 .

[29]  H. Nagahama,et al.  Surface electrification of rocks and charge trapping centers , 2004 .

[30]  Jay Fineberg,et al.  Detachment fronts and the onset of dynamic friction , 2004, Nature.

[31]  S. Yoshida,et al.  Electromagnetic emissions from dry and wet granite associated with acoustic emissions , 2004 .

[32]  Oleg A. Pokhotelov,et al.  Earthquake prediction : seismo-electromagnetic phenomena , 1995 .

[33]  V. Hadjicontis,et al.  Transient electric signals prior to rock failure under uniaxial compression , 1994 .

[34]  Masashi Hayakawa,et al.  Generation of ULF electromagnetic emissions by microfracturing , 1995 .

[35]  Panayiotis Frangos,et al.  Model of Pre-Seismic Electromagnetic Emissions in Terms of Fractal-Electrodynamics , 2003 .

[36]  池谷 元伺,et al.  ESR dating and dosimetry , 1985 .

[37]  J. Weeks,et al.  Roughness and wear during brittle faulting , 1988 .

[38]  Shingo Yoshida,et al.  Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals , 1997 .

[39]  W. Waters Electrical induction from distant current surges , 1983 .

[40]  Ichiro Arakawa,et al.  Frictional discharge plasma from natural semiconductor/insulator junctions: Origin of seismo-electromagnetic radiation , 2006 .

[41]  F. Dale Morgan,et al.  Electromagnetic precursors to earthquakes in the Ulf band: A review of observations and mechanisms , 1993 .

[42]  B. T. Brady,et al.  Laboratory investigation of the electrodynamics of rock fracture , 1986, Nature.

[43]  H. Aochi,et al.  Slip- and Time-dependent Fault Constitutive Law and its Significance in Earthquake Generation Cycles , 2002 .

[44]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[45]  F. Freund,et al.  On the electrical conductivity structure of the stable continental crust , 2003 .

[46]  Masashi Hayakawa,et al.  Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes , 1999 .

[47]  V. Frid,et al.  Electromagnetic radiation associated with induced triaxial fracture in granite , 1999 .

[48]  P. Sammonds,et al.  Electric potential changes prior to shear fracture in dry and saturated rocks , 1998 .

[49]  Akihiro Takeuchi,et al.  Scaling laws between seismo‐electric/magnetic fields and earthquake magnitude , 2004 .

[50]  H. Nagahama,et al.  Voltage changes induced by stick‐slip of granites , 2001 .

[51]  Akihiro Takeuchi,et al.  Stress-Induced Changes in the Electrical Conductivity of Igneous Rocks and the Generation of Ground Currents , 2004 .

[52]  Hiroyuki Nagahama,et al.  Chapter 23 - Electric and Electromagnetic Fields Related to Earthquake Formation , 2001 .

[53]  早川 正士,et al.  Electromagnetic phenomena related to earthquake prediction , 1994 .

[54]  T. R. Meyer,et al.  Radio emission associated with rock fracture: Possible application to the Great Chilean Earthquake of May 22, 1960 , 1982 .

[55]  Activities of Triboluminescence at Sample Failure of Granite , 1986 .

[56]  T. Chelidze,et al.  Electrical spectroscopy of porous rocks: a review—II. Experimental results and interpretation , 1999 .