An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems

[1]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[2]  Stephen Portnoy,et al.  A Robust Journey in the New Millennium , 2000 .

[3]  Xiaochuan Pan,et al.  An algorithm for constrained one-step inversion of spectral CT data , 2015, Physics in medicine and biology.

[4]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[5]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[6]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[7]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[8]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[9]  V. Yohai,et al.  ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .

[10]  Jian Huang,et al.  COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. , 2011, The annals of applied statistics.

[11]  Asok Ray,et al.  Multimodal Task-Driven Dictionary Learning for Image Classification , 2015, IEEE Transactions on Image Processing.

[12]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[13]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[14]  Zhi-Quan Luo,et al.  A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing , 2015, IEEE Signal Processing Magazine.

[15]  Zhaosong Lu,et al.  Iterative reweighted minimization methods for $$l_p$$lp regularized unconstrained nonlinear programming , 2012, Math. Program..

[16]  J. Spingarn Submonotone subdifferentials of Lipschitz functions , 1981 .

[17]  Xiaodong Lin,et al.  A Selective Linearization Method For Multiblock Convex Optimization , 2017, SIAM J. Optim..

[18]  A. M. Shurygin,et al.  Redescending M-estimators , 2008 .

[19]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[20]  Julien Mairal,et al.  Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning , 2014, SIAM J. Optim..

[21]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[22]  Emmanuel Barillot,et al.  Classification of arrayCGH data using fused SVM , 2008, ISMB.

[23]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[24]  Andrzej Ruszczynski,et al.  Proximal Decomposition Via Alternating Linearization , 1999, SIAM J. Optim..

[25]  T. Hastie,et al.  SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.

[26]  Tingting Zhang,et al.  A low-rank multivariate general linear model for multi-subject fMRI data and a non-convex optimization algorithm for brain response comparison , 2017, NeuroImage.

[27]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[28]  Ali H. Sayed,et al.  On the Learning Behavior of Adaptive Networks—Part I: Transient Analysis , 2013, IEEE Transactions on Information Theory.

[29]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..