A Class of Conjugate Priors for Log-Normal Claims Based on Conditional Specification
暂无分享,去创建一个
[1] José María Sarabia Alzaga,et al. Caracterización de modelos bivariantes con distribuciones condicionadas tipo GAMMA , 1990 .
[2] Bounds for Ratios of Posterior Expectations: Applications in the Collective Risk Model , 2002 .
[3] M. Degroot. Optimal Statistical Decisions , 1970 .
[4] Measuring sensitivity in a bonus–malus system ☆ , 2002 .
[5] Bayes estimation of reliability for the two-parameter lognormal distribution , 1977 .
[6] B. Arnold,et al. Conditionally Specified Distributions: An Introduction (with comments and a rejoinder by the authors) , 2001 .
[7] H. Jeffreys,et al. Theory of probability , 1896 .
[8] William S. Jewell,et al. Credible Means are exact Bayesian for Exponential Families , 1974, ASTIN Bulletin.
[9] Richard E. Barlow,et al. Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .
[10] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[11] Lefkowitz,et al. METHODS FOR FITTING DISTRIBUTIONS TO INSURANCE LOSS DATA , 1999 .
[12] B. Arnold,et al. Multiple modes in densities with normal conditionals , 2000 .
[13] Stuart A. Klugman,et al. Loss Models: From Data to Decisions , 1998 .
[14] Emilio Gómez Déniz,et al. Robust Bayesian Premium Principles in Actuarial Science , 2000 .
[15] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[16] U. Makov,et al. Sequential credibility evaluation for symmetric location claim distributions , 1999 .
[17] B. Arnold,et al. BAYESIAN ANALYSIS FOR CLASSICAL DISTRIBUTIONS USING CONDITIONALLY SPECIFIED PRIORS , 1998 .