Risk bounds for Statistical Learning ( Running Title : Risk bounds for Statistical Learning )

We propose a general theorem providing upper bounds for the risk of an empirical risk minimizer (ERM).We essentially focus on the binary classi…cation framework. We extend Tsybakov’s analysis of the risk of an ERM under margin type conditions by using concentration inequalities for conveniently weighted empirical processes. This allows us to deal with other ways of measuring the ”size”of a class of classi…ers than entropy with bracketing as in Tsybakov’s work. In particular we derive new risk bounds for the ERM when the classi…cation rules belong to some VC-class under margin conditions and discuss the optimality of those bounds in a minimax sense.

[1]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[2]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[3]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[4]  E. Berger UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .

[5]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[6]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[7]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[8]  P. Massart,et al.  A uniform Marcinkiewicz-Zygmund strong law of large numbers for empirical processes , 1998 .

[9]  E. Mammen,et al.  Smooth Discrimination Analysis , 1999 .

[10]  O. Bousquet A Bennett concentration inequality and its application to suprema of empirical processes , 2002 .

[11]  A. R. Barron,et al.  Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities , 2003 .

[12]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[13]  P. Massart Some applications of concentration inequalities to statistics , 2000 .

[14]  D. Pollard A central limit theorem for empirical processes , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  L. Birge,et al.  A new lower bound for multiple hypothesis testing , 2005, IEEE Transactions on Information Theory.

[16]  David Haussler,et al.  Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.

[17]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[18]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[19]  A. W. van der Vaart,et al.  Uniform Central Limit Theorems , 2001 .

[20]  A. V. D. Vaart,et al.  Lectures on probability theory and statistics , 2002 .