Quantifying the effects of subsurface heterogeneity on hillslope runoff using a stochastic approach

The role of heterogeneity and uncertainty in hydraulic conductivity on hillslope runoff production was evaluated using the fully integrated hydrologic model ParFlow. Simulations were generated using idealized high-resolution hillslopes configured both with a deep water table and a water table equal to the outlet to isolate surface and subsurface flow, respectively. Heterogeneous, correlated random fields were used to create spatial variability in the hydraulic conductivity. Ensembles, generated by multiple realizations of hydraulic conductivity, were used to evaluate how this uncertainty propagates to runoff. Ensemble averages were used to determine the effective runoff for a given hillslope as a function of rainfall rate and degree of subsurface heterogeneity. Cases where the water table is initialized at the outlet show runoff behavior with little sensitivity to variance in hydraulic conductivity. A technique is presented that explicitly interrogates individual realizations at every simulation timestep to partition overland and subsurface flow contributions. This hydrograph separation technique shows that the degree of heterogeneity can play a role in determining proportions of surface and subsurface flow, even when effective hillslope outflow is seen. This method is also used to evaluate current hydrograph separation techniques and demonstrates that recursive filters can accurately proportion overland and base-flow for certain cases.RésuméLe rôle de l’hétérogénéité de la perméabilité et de son incertitude dans la génération du ruissellement de versant a été évalué en utilisant le modèle hydrologique totalement intégré ParFlow. Des simulations ont été générées en utilisant des pentes idéalisées de haute résolution configurées aussi bien avec un niveau piézométrique de nappe libre profond qu’avec un niveau piézométrique égal à celui de l’exutoire, afin de distinguer respectivement écoulement de surface et écoulement de sub-surface. Des champs aléatoires corrélés hétérogènes ont été utilisés pour créer la variabilité spatiale de la perméabilité. Des ensembles, générés par de multiples réalisations du champ de perméabilité, ont été utilisés pour évaluer comment cette incertitude se propage au ruissellement. Des moyennes de ces ensembles ont été utilisées pour définir le ruissellement efficace pour un versant donné en fonction de l’intensité des précipitations et du degré d’hétérogénéité de la sub-surface. Les cas où la surface libre de la nappe est initialisée au niveau de l’exutoire montrent un comportement du ruissellement peu sensible vis-à-vis de la variance de la perméabilité. Une technique est présentée, qui analyse de manière explicite les réalisations individuelles à chaque pas de temps de calcul de la simulation, en vue de distinguer les contributions de l’écoulement de surface et de l’écoulement de sub-surface. Cette technique de décomposition de l’hydrogramme montre que le degré d’hétérogénéité peut jouer un rôle dans la détermination des proportions entre l’écoulement de surface et de sub-surface, même quand des venues d’eau sont constatées sur le versant. Cette méthode est aussi utilisée pour évaluer des techniques courantes de décomposition de l’hydrogramme et démontre que les filtres récursifs peuvent, dans certains cas, établir avec précision la proportion entre écoulement de surface et écoulement de base.ResumenSe evaluó el rol de la heterogeneidad y la incertidumbre en la conductividad hidráulica sobre la producción del escurrimiento usando el modelo hidrológico completamente integrado ParFlow. Las simulaciones fueron generadas utilizando faldeos idealizados de alta resolución configurados tanto con el nivel freático profundo como con el nivel freático igual a la salida para aislar el flujo superficial y subsuperficial, respectivamente. Se utilizaron campos aleatorios correlacionados heterogéneos para crear la variabilidad espacial en la conductividad hidráulica. Se utilizaron conjuntos generados por realizaciones múltiples de la conductividad hidráulica para evaluar como esta incertidumbre se propaga al escurrimiento. Se usaron los promedios de conjuntos para determinar el escurrimiento efectivo para un faldeo dado como una función del ritmo de la precipitación y el grado de heterogeneidad subsuperficial. Los casos donde el nivel freático es inicializado a la salida muestran un comportamiento del escurrimiento con una baja sensibilidad a la varianza en la conductividad hidráulica. Se presenta una técnica que interroga explícitamente las realizaciones individuales en cada paso de tiempo de la simulación para particionar las contribuciones del flujo sobre la superficie y subsuperficial. Esta técnica de separación del hidrograma muestra que el grado de heterogeneidad puede jugar un rol en determinar las proporciones del flujo superficial y subsuperficial, aún cuando el flujo efectivo de salida del faldeo está a la vista. Este método también es usado para evaluar las técnicas corrientes de separación de hidrogramas y demuestra que los filtros recursivos pueden definir con exactitud la proporción de flujo de superficie y flujo de base para ciertos casos.ResumoFoi avaliado o papel da heterogeneidade e da incerteza da condutividade hidráulica na escorrência produzida em vertentes, através da utilização do modelo hidrológico ParFlow. Foram geradas simulações utilizando vertentes ideais de alta resolução, incorporando um aquífero freático profundo, assim como uma superfície freática coincidente com a secção de medição no curso de água, de forma a permitir isolar, respectivamente, o escoamento superficial e subsuperficial. Campos aleatórios correlacionados heterogéneos foram utilizados para criar variabilidade espacial da condutividade hidráulica. Conjuntos gerados por múltiplas concepções da condutividade hidráulica foram utilizados para avaliar como esta incerteza se propaga na escorrência. Médias de conjunto foram usadas para determinar a escorrência eficaz para uma dada vertente, como uma função da taxa de precipitação e do grau de heterogeneidade do subsolo. Casos onde o aquífero freático é feito coincidir com a secção de medição no curso de água mostram um comportamento da escorrência pouco sensível à variação da condutividade hidráulica. É apresentada uma técnica que questiona explicitamente as realizações individuais em cada iteração da simulação, para separação das contribuições do escoamento superficial e subsuperficial. Esta técnica de separação do hidrograma mostra que o grau de heterogeneidade pode desempenhar um papel na determinação das proporções do escoamento superficial e do escoamento subsuperfícial, mesmo quando o escoamento eficaz da vertente é observado. Este método também é utilizado para avaliar técnicas de separação do hidrograma geral e demonstra que os filtros recursivos podem, para certos casos, relacionar com precisão o escoamento superficial e o escoamento de base.

[1]  Fotini Katopodes Chow,et al.  Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes , 2010 .

[2]  Claire Welty,et al.  Revisiting the Cape Cod bacteria injection experiment using a stochastic modeling approach. , 2005, Environmental science & technology.

[3]  R. Horton The Rôle of infiltration in the hydrologic cycle , 1933 .

[4]  C. Shoemaker,et al.  A Comparison of Chemical and Isotopic Hydrograph Separation , 1986 .

[5]  T. McMahon,et al.  Evaluation of automated techniques for base flow and recession analyses , 1990 .

[6]  Young-Jin Park,et al.  An assessment of the tracer‐based approach to quantifying groundwater contributions to streamflow , 2006 .

[7]  R. Allan Freeze,et al.  A stochastic‐conceptual analysis of rainfall‐runoff processes on a hillslope , 1980 .

[8]  S. Ashby,et al.  A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations , 1996 .

[9]  David A. Woolhiser,et al.  Overland Flow on an Infiltrating Surface , 1971 .

[10]  G. Fogg,et al.  Transition probability-based indicator geostatistics , 1996 .

[11]  R. Maxwell,et al.  Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model , 2006 .

[12]  Stefan Uhlenbrook,et al.  Comparison of different base flow separation methods in a lowland catchment , 2009 .

[13]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[14]  Keith Beven,et al.  A physically based model of heterogeneous hillslopes: 1. Runoff production , 1989 .

[15]  Keith Loague,et al.  The quixotic search for a comprehensive understanding of hydrologic response at the surface: Horton, Dunne, Dunton, and the role of concept‐development simulation , 2010 .

[16]  B. Diekkrüger,et al.  Numerical experiments on the sensitivity of runoff generation to the spatial variation of soil hydraulic properties , 2006 .

[17]  R. Freeze,et al.  Blueprint for a physically-based, digitally-simulated hydrologic response model , 1969 .

[18]  K. Eckhardt A comparison of baseflow indices, which were calculated with seven different baseflow separation methods , 2008 .

[19]  Murugesu Sivapalan,et al.  Effects of hydraulic conductivity variability on hillslope‐scale shallow subsurface flow response and storage‐discharge relations , 2009 .

[20]  Peter J. Diggle,et al.  Analysing Positive-Valued Spatial Data: the Transformed Gaussian Model , 2001 .

[21]  D. A. Woolhiser,et al.  Effects of Spatial Variability of Saturated Hydraulic Conductivity on Hortonian Overland Flow , 1996 .

[22]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[23]  Jeffrey J. McDonnell,et al.  A look inside ‘black box’ hydrograph separation models: a study at the Hydrohill catchment , 2001 .

[24]  Eric F. Wood,et al.  An analysis of the effects of parameter uncertainty in deterministic hydrologic models , 1976 .

[25]  Jan Vanderborght,et al.  Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources , 2010 .

[26]  M. Sklash,et al.  The Role Of Groundwater In Storm Runoff , 1979 .

[27]  G. Fogg,et al.  Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains , 1997 .

[28]  Aldo Fiori,et al.  Travel time distribution in a hillslope: Insight from numerical simulations , 2008 .

[29]  K. Beven,et al.  A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities , 1989 .

[30]  F. R. Hall Base‐Flow Recessions—A Review , 1968 .

[31]  G. Dagan Flow and transport in porous formations , 1989 .

[32]  R. Horton,et al.  The field, scope, and status of the science of hydrology , 1931 .

[33]  Y. Rubin Applied Stochastic Hydrogeology , 2003 .

[34]  Rao S. Govindaraju,et al.  Role of run-on for describing field-scale infiltration and overland flow over spatially variable soils , 2004 .

[35]  C. Duffy,et al.  A semidiscrete finite volume formulation for multiprocess watershed simulation , 2007 .

[36]  Andrew F. B. Tompson,et al.  Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media , 1990 .

[37]  K. Eckhardt How to construct recursive digital filters for baseflow separation , 2005 .

[38]  John P. Bloomfield,et al.  Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK , 2009 .

[39]  C. Paniconi,et al.  Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data , 2010 .

[40]  S. Uhlenbrook,et al.  Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales , 2002 .

[41]  Reed M. Maxwell,et al.  Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach , 2008 .

[42]  G. Dagan,et al.  Conditional estimation of solute travel time in heterogeneous formations: Impact of transmissivity measurements , 1992 .

[43]  Jim E. Jones,et al.  Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems , 2001 .

[44]  R. Allan Freeze,et al.  Role of subsurface flow in generating surface runoff: 1. Base flow contributions to channel flow , 1972 .

[45]  Peter S. Eagleson,et al.  Climate, soil, and vegetation: 1. Introduction to water balance dynamics , 1978 .

[46]  E. Mouche,et al.  A generalized Richards equation for surface/subsurface flow modelling , 2009 .

[47]  D. McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments , 1989 .

[48]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[49]  Virgilio Fiorotto,et al.  Solute transport in highly heterogeneous aquifers , 1998 .

[50]  R. Ababou,et al.  Implementation of the three‐dimensional turning bands random field generator , 1989 .

[51]  P. Huyakorn,et al.  A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow , 2004 .

[52]  Ronald A. Sloto,et al.  HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis , 1996 .

[53]  Keith Beven,et al.  Effects of spatial variability and scale with implications to hydrologic modeling , 1988 .

[54]  R. D. Black,et al.  An Experimental Investigation of Runoff Production in Permeable Soils , 1970 .

[55]  Aldo Fiori,et al.  Numerical experiments of streamflow generation in steep catchments , 2007 .

[56]  R. D. Black,et al.  Partial Area Contributions to Storm Runoff in a Small New England Watershed , 1970 .

[57]  R. Allan Freeze,et al.  Role of subsurface flow in generating surface runoff: 2. Upstream source areas , 1972 .

[58]  W. W. Wood,et al.  Large-Scale Natural Gradient Tracer Test in Sand and Gravel, , 1991 .

[59]  Franklin W. Schwartz,et al.  Mass transport: 1. A stochastic analysis of macroscopic dispersion , 1980 .

[60]  K. Loague,et al.  Hydrologic‐Response simulations for the R‐5 catchment with a comprehensive physics‐based model , 2001 .

[61]  Franklin W. Schwartz,et al.  mass transport: 2. Analysis of uncertainty in prediction , 1981 .

[62]  Keith Loague Impact of rainfall and soil hydraulic property information on runoff predictions at the hillslope scale , 1988 .

[63]  Robert D. Falgout,et al.  Analysis of subsurface contaminant migration and remediation using high performance computing , 1998 .

[64]  Reed M. Maxwell,et al.  Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model , 2009 .

[65]  Murugesu Sivapalan,et al.  Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation , 1999 .

[66]  M. A. Kohler,et al.  Hydrology for engineers , 1958 .

[67]  Theodore K. Apostolopoulos,et al.  Parallel computation for streamflow prediction with distributed hydrologic models , 1997 .

[68]  Aldo Fiori,et al.  Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties , 2007 .

[69]  F. Fiedler,et al.  International Journal for Numerical Methods in Fluids a Numerical Method for Simulating Discontinuous Shallow Flow over an Infiltrating Surface , 2022 .