Likelihood-Based Modulation Classification for Multiple-Antenna Receiver

Likelihood-based algorithms for the classification of linear digital modulations are systematically investigated for a multiple receive antennas configuration. Existing modulation classification (MC) algorithms are first extended to the case of multiple receive antennas and then a critical problem is identified that the overall performance of the multiple antenna systems is dominated by the worst channel estimate of a particular antenna. To address the performance degradation issue, we propose a new MC algorithm by optimally combining the log likelihood functions (LLFs). Furthermore, to analyze the upper-bound performance of the existing and the proposed MC algorithms, the exact Cramer-Rao Lower Bound (CRLB) expressions of non-data-aided joint estimates of amplitude, phase, and noise variance are derived for general rectangular quadrature amplitude modulation (QAM). Numerical results demonstrate the accuracy of the CRLB expressions and verify that the results reported in the literature for quadrature phase-shift keying (QPSK) and 16-QAM are special cases of our derived expressions. Also, it is demonstrated that the probability of correct classification of the new algorithm approaches the theoretical bounds and a substantial performance improvement is achieved compared to the existing MC algorithm.

[1]  M. Derakhtian,et al.  Modulation classification of linearly modulated signals in slow flat fading channels , 2011 .

[2]  MengChu Zhou,et al.  Likelihood-Ratio Approaches to Automatic Modulation Classification , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[3]  Sofiène Affes,et al.  Cramer-Rao Lower Bounds for NDA SNR Estimates of Square QAM Modulated Transmissions , 2010, IEEE Transactions on Communications.

[4]  Sofiène Affes,et al.  Cramér-Rao Lower Bounds for Frequency andPhase NDA Estimation From Arbitrary Square QAM-Modulated Signals , 2010, IEEE Transactions on Signal Processing.

[5]  Ali Abdi,et al.  Cyclostationarity-Based Modulation Classification of Linear Digital Modulations in Flat Fading Channels , 2010, Wirel. Pers. Commun..

[6]  Octavia A. Dobre,et al.  On the Cyclostationarity of OFDM and Single Carrier Linearly Digitally Modulated Signals in Time Dispersive Channels: Theoretical Developments and Application , 2010, IEEE Transactions on Wireless Communications.

[7]  MengChu Zhou,et al.  Distributed Automatic Modulation Classification With Multiple Sensors , 2010, IEEE Sensors Journal.

[8]  Tamal Bose,et al.  Robust Multiuser Automatic Modulation Classifier for Multipath Fading Channels , 2010, 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN).

[9]  Sofiène Affes,et al.  Moment-based SNR estimation over linearly-modulated wireless SIMO channels , 2010, IEEE Transactions on Wireless Communications.

[10]  K. Peppas,et al.  Average Symbol Error Probability of General-Order Rectangular Quadrature Amplitude Modulation of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels , 2010, IEEE/OSA Journal of Optical Communications and Networking.

[11]  Octavia A. Dobre,et al.  On the likelihood-based approach to modulation classification , 2009, IEEE Transactions on Wireless Communications.

[12]  P. Willett,et al.  MIMO-OFDM for High-Rate Underwater Acoustic Communications , 2009, IEEE Journal of Oceanic Engineering.

[13]  Xianbin Wang,et al.  Robust switching blind equalizer for wireless cognitive receivers , 2008, IEEE Transactions on Wireless Communications.

[14]  Roberto López-Valcarce,et al.  Non-Data-Aided Symbol Rate Estimation of Linearly Modulated Signals , 2008, IEEE Transactions on Signal Processing.

[15]  Ali Abdi,et al.  Survey of automatic modulation classification techniques: classical approaches and new trends , 2007, IET Commun..

[16]  George K. Karagiannidis,et al.  On the symbol error probability of general order rectangular qam in nakagami-m fading , 2006, IEEE Communications Letters.

[17]  Octavia A. Dobre,et al.  Likelihood-Based Algorithms for Linear Digital Modulation Classification in Fading Channels , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[18]  Hsiao-Chun Wu,et al.  Robust automatic modulation classification using cumulant features in the presence of fading channels , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[19]  Patrizio Campisi,et al.  Blind phase recovery for QAM communication systems , 2005, IEEE Transactions on Signal Processing.

[20]  Y. Bar-Ness,et al.  Modulation classification in fading channels using antenna arrays , 2004, IEEE MILCOM 2004. Military Communications Conference, 2004..

[21]  Octavia A. Dobre,et al.  Robust QAM modulation classification algorithm using cyclic cumulants , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[22]  Y. Bar-Ness,et al.  Higher-order cyclic cumulants for high order modulation classification , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[23]  Wei Dai,et al.  Joint power estimation and modulation classification using second- and higher statistics , 2002, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).

[24]  S. Kay Fundamentals Of Statistical Signal Processing , 2001 .

[25]  Achilleas Anastasopoulos,et al.  Likelihood ratio tests for modulation classification , 2000, MILCOM 2000 Proceedings. 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No.00CH37155).

[26]  Norman C. Beaulieu,et al.  A comparison of SNR estimation techniques for the AWGN channel , 2000, IEEE Trans. Commun..

[27]  K. C. Ho,et al.  Modulation identification of digital signals by the wavelet transform , 2000 .

[28]  Brian M. Sadler,et al.  Hierarchical digital modulation classification using cumulants , 2000, IEEE Trans. Commun..

[29]  Jerry M. Mendel,et al.  Maximum-likelihood classification for digital amplitude-phase modulations , 2000, IEEE Trans. Commun..

[30]  B. Mobasseri,et al.  Constellation shape as a robust signature for digital modulation recognition , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[31]  K. C. Ho,et al.  Identification of digital modulation types using the wavelet transform , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[32]  Jerry M. Mendel,et al.  A fuzzy logic method for modulation classification in nonideal environments , 1999, IEEE Trans. Fuzzy Syst..

[33]  C. Le Martret,et al.  Modulation classification by means of different orders statistical moments , 1997, MILCOM 97 MILCOM 97 Proceedings.

[34]  Asoke K. Nandi,et al.  Automatic Modulation Recognition of Communication Signals , 1996 .

[35]  K. C. Ho,et al.  Modulation identification by the wavelet transform , 1995, Proceedings of MILCOM '95.

[36]  Andreas Polydoros,et al.  Likelihood methods for MPSK modulation classification , 1995, IEEE Trans. Commun..

[37]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[38]  A. Polydoros,et al.  Advanced methods for digital quadrature and offset modulation classification , 1991, MILCOM 91 - Conference record.

[39]  Samir S. Soliman,et al.  Automatic modulation classification using zeroç crossing , 1990 .

[40]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[41]  Umberto Mengali,et al.  Data-aided frequency estimation for burst digital transmission , 1997, IEEE Trans. Commun..

[42]  Peter Grant,et al.  DIGITAL COMMUNICATIONS , 2022 .