Characterization of ferroniobium topologically close-packed phase inclusion in nickel-based 152 cladding of dissimilar metal welds

[1]  L. Peters,et al.  Room temperature deformation in the Fe7Mo6 μ-Phase , 2018, International Journal of Plasticity.

[2]  E. Han,et al.  Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint , 2018 .

[3]  E. Han,et al.  Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water , 2017 .

[4]  E. Han,et al.  Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW , 2017 .

[5]  Julie M. Cairney,et al.  Transmission Kikuchi diffraction in a scanning electron microscope: A review , 2016 .

[6]  E. Han,et al.  Stress corrosion cracking of 316L HAZ for 316L stainless steel/Inconel 52M dissimilar metal weld joint in simulated primary water , 2016 .

[7]  E. Han,et al.  Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW , 2016 .

[8]  Steffen Neumeier,et al.  Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloy , 2015 .

[9]  A. N. Ladines,et al.  Structural stability of Fe-based topologically close-packed phases , 2015 .

[10]  Jianqiu Wang,et al.  Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET , 2015 .

[11]  E. Han,et al.  Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint , 2014 .

[12]  Kin-Ling Sham,et al.  Flux Coating Development for SMAW Consumable Electrode of High Nickel Alloys , 2014 .

[13]  Fu-Zhen Xuan,et al.  An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint , 2013 .

[14]  P. Trimby,et al.  Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. , 2012, Ultramicroscopy.

[15]  Roy H. Geiss,et al.  Transmission EBSD from 10 nm domains in a scanning electron microscope , 2012 .

[16]  E. Han,et al.  The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water , 2011 .

[17]  B. Seiser,et al.  Theory of structural trends within4dand5dtransition metal topologically close-packed phases , 2011 .

[18]  D. Raabe,et al.  Phase Equilibria in the Fe-Nb System , 2011 .

[19]  Ralf Drautz,et al.  TCP phase predictions in Ni-based superalloys: Structure maps revisited , 2011 .

[20]  Y. Takeda,et al.  Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint , 2010 .

[21]  M. Olszta,et al.  CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS , 2009 .

[22]  M. Rogers,et al.  In situ lift-out: steps to improve yield and a comparison with other FIB TEM sample preparation techniques. , 2008, Micron.

[23]  Y. Takeda,et al.  Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment , 2008 .

[24]  Sergio Lozano-Perez,et al.  A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. , 2008, Micron.

[25]  Marcel H. F. Sluiter,et al.  Lattice stability prediction of elemental tetrahedrally close-packed structures , 2007 .

[26]  T. Malis,et al.  Recent advances in FIB–TEM specimen preparation techniques , 2006 .

[27]  J. Crum,et al.  Nickel alloy welding requirements for nuclear service , 2005 .

[28]  M. Palm,et al.  Structure and stability of Laves phases part II—structure type variations in binary and ternary systems , 2005 .

[29]  M. Palm,et al.  Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability , 2004 .

[30]  J. A. Gorman,et al.  Quantitative Assessment of Submodes of Stress Corrosion Cracking on the Secondary Side of Steam Generator Tubing in Pressurized Water Reactors: Part 1 , 2003 .

[31]  P. Liaw,et al.  Enthalpies of formation of binary Laves phases , 2002 .

[32]  Warren H. Bamford,et al.  Integrity Evaluation for Future Operation: Virgil C. Summer Nuclear Plant Reactor Vessel Nozzle to Pipe Weld Regions , 2000 .

[33]  P. Liaw,et al.  A thermodynamic interpretation of the size-ratio limits for laves phase formation , 1999 .

[34]  F. Nabarro,et al.  Fifty-year study of the Peierls-Nabarro stress , 1997 .

[35]  F. P. Ford Quantitative Prediction of Environmentally Assisted Cracking , 1996 .

[36]  G. Was,et al.  Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems , 1994 .

[37]  J. Livingston Laves‐phase superalloys? , 1992 .

[38]  R. E. Watson,et al.  Transition-metal alloy formation. The occurrence of topologically close packed phases-I , 1984 .

[39]  R. E. Watson,et al.  Model predictions of volume contractions in transition-metal alloys and implications for laves phase formation—II , 1984 .

[40]  J. Hafner Structure, bonding, and stability of topologically close-packed intermetallic compounds , 1977 .

[41]  A. Sinha Topologically close-packed structures of transition metal alloys , 1972 .

[42]  G. Thomas,et al.  Further Applications of Kikuchi Diffraction Patterns; Kikuchi Maps , 1966 .

[43]  F. C. Frank,et al.  Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures , 1959 .

[44]  J. Kasper,et al.  COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. I. DEFINITIONS AND BASIC PRINCIPLES , 1958 .