Distributed Space Debris Tracking with Consensus Labeled Random Finite Set Filtering †

Space debris tracking is a challenge for spacecraft operation because of the increasing number of both satellites and the amount of space debris. This paper investigates space debris tracking using marginalized δ-generalized labeled multi-Bernoulli filtering on a network of nodes consisting of a collection of sensors with different observation volumes. A consensus algorithm is used to achieve the global average by iterative regional averages. The sensor network can have unknown or time-varying topology. The proposed space debris tracking algorithm provides an efficient solution to the key challenges (e.g., detection uncertainty, data association uncertainty, clutter, etc.) for space situational awareness. The performance of the proposed algorithm is verified by simulation results.

[1]  Weston R. Faber,et al.  A randomized sampling based approach to multi-object tracking , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[2]  Christoforos N. Hadjicostis,et al.  Distributed Finite-Time Average-Consensus With Limited Computational and Storage Capability , 2017, IEEE Transactions on Control of Network Systems.

[3]  R. Murray,et al.  Consensus protocols for networks of dynamic agents , 2003, Proceedings of the 2003 American Control Conference, 2003..

[4]  Brett Nener,et al.  Consensus labeled multi-Bernoulli filtering for distributed space debris tracking , 2017, 2017 International Conference on Control, Automation and Information Sciences (ICCAIS).

[5]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[6]  Gabriele Oliva,et al.  Performance and robustness of discrete and finite time average consensus algorithms , 2018, Int. J. Syst. Sci..

[7]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[8]  Weifeng Liu,et al.  Global tracking of space debris via CPHD and consensus , 2017 .

[9]  Ba-Ngu Vo,et al.  Challenges of multi-target tracking for space situational awareness , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[10]  Alireza Doostan,et al.  Satellite collision probability estimation using polynomial chaos expansions , 2013 .

[11]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[12]  Krishnendu Chakrabarty,et al.  Distributed Mobility Management for Target Tracking in Mobile Sensor Networks , 2007, IEEE Transactions on Mobile Computing.

[13]  Carolin Frueh,et al.  Multiple-Object Space Surveillance Tracking Using Finite-Set Statistics , 2015 .

[14]  Karl Henrik Johansson,et al.  Finite-Time Consensus Using Stochastic Matrices With Positive Diagonals , 2013, IEEE Transactions on Automatic Control.

[15]  Weston R. Faber,et al.  Multi-Object Tracking with Multiple Birth, Death, and Spawn Scenarios Using A Randomized Hypothesis Generation Technique (R-FISST) , 2016, ArXiv.

[16]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[17]  R. Olfati-Saber,et al.  Consensus Filters for Sensor Networks and Distributed Sensor Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[19]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[20]  Giuseppe Carlo Calafiore,et al.  Distributed linear estimation over sensor networks , 2009, Int. J. Control.

[21]  C.N. Hadjicostis,et al.  Finite-Time Distributed Consensus in Graphs with Time-Invariant Topologies , 2007, 2007 American Control Conference.

[22]  Mark R. Morelande,et al.  Distributed multi-target tracking via generalized multi-Bernoulli random finite sets , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[23]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[24]  Ba-Ngu Vo,et al.  AAS 15-413 A LABELED MULTI-BERNOULLI FILTER FOR SPACE OBJECT TRACKING , 2015 .

[25]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[26]  Xin-Ping Guan,et al.  Distributed optimal consensus filter for target tracking in heterogeneous sensor networks , 2011, 2011 8th Asian Control Conference (ASCC).

[27]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[28]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[29]  Raphaël M. Jungers,et al.  Graph diameter, eigenvalues, and minimum-time consensus , 2012, Autom..

[30]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Penina Axelrad,et al.  Measurement-based Birth Model for a Space Object Cardinalized Probability Hypothesis Density Filter , 2014 .

[32]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[33]  Kyle J. DeMars,et al.  The Cauchy-Schwarz divergence for assessing situational information gain , 2012, 2012 15th International Conference on Information Fusion.

[34]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[35]  Giorgio Battistelli,et al.  Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability , 2014, Autom..

[36]  Andrea Cavallaro,et al.  Consensus protocols for distributed tracking in wireless camera networks , 2014, 17th International Conference on Information Fusion (FUSION).

[37]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[38]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[39]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[40]  Reza Olfati-Saber,et al.  Kalman-Consensus Filter : Optimality, stability, and performance , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[41]  Claudio Fantacci,et al.  Distributed multi-object tracking over sensor networks: a random finite set approach , 2015, ArXiv.

[42]  Giorgio Battistelli,et al.  Robust Fusion for Multisensor Multiobject Tracking , 2018, IEEE Signal Processing Letters.

[43]  Parameswaran Ramanathan,et al.  Distributed target classification and tracking in sensor networks , 2003 .

[44]  Amit K. Roy-Chowdhury,et al.  Information Consensus for Distributed Multi-target Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  N. Bobrinsky,et al.  The space situational awareness program of the European Space Agency , 2010 .

[46]  P. Mahalanobis,et al.  Analysis of race-mixture in Bengal , 1925 .

[47]  Mark W. Spong,et al.  Output Synchronization of Nonlinear Systems with Relative Degree One , 2008, Recent Advances in Learning and Control.

[48]  Ba-Ngu Vo,et al.  Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities , 2014, IEEE Transactions on Signal Processing.

[49]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[50]  Kyle J. DeMars,et al.  An AEGIS-FISST Algorithm for Multiple Object Tracking in Space Situational Awareness , 2012 .

[51]  Reza Olfati-Saber,et al.  Distributed Kalman filtering for sensor networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[52]  Giorgio Battistelli,et al.  Consensus CPHD Filter for Distributed Multitarget Tracking , 2013, IEEE Journal of Selected Topics in Signal Processing.

[53]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[54]  Kyle J. DeMars,et al.  An AEGIS-FISST integrated detection and tracking approach to Space Situational Awareness , 2012, 2012 15th International Conference on Information Fusion.

[55]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[56]  Faith Vilas,et al.  A space-based concept for a collision warning sensor , 1990 .

[57]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .